Muutke küpsiste eelistusi

E-raamat: Design of Smart Power Grid Renewable Energy Systems

  • Formaat: EPUB+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 27-Apr-2016
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118978924
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 140,79 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: IEEE Press
  • Ilmumisaeg: 27-Apr-2016
  • Kirjastus: Wiley-IEEE Press
  • Keel: eng
  • ISBN-13: 9781118978924
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Provides a systems approach to sustainable green energy production and contains analytical tools to aid in the design of renewable microgrids

This book discusses the fundamental concepts of power grid integration on microgrids of green energy sources. In each chapter, the author presents a key engineering problem, and then formulates a mathematical model of the problem followed by a simulation testbed in MATLAB, highlighting solution steps. The book builds its foundation on design of distributed generating system, and design of PV generating plants by introducing design- efficient smart residential PV microgrids. These include energy monitoring systems, smart devices, building load estimation, load classification, and real-time pricing. The book presents basic concepts of phasor systems, three-phase systems, transformers, loads, DC/DC converters, DC/AC inverters, and AC/DC rectifiers, which are all integrated into the design of microgrids for renewable energy as part of bulk interconnected power grids. Other topics of discussion include the Newton formulation of power flow, the Newton—Raphson solution of a power flow problem, the fast decoupled solution for power flow studies, and short circuit calculations.

  • Focuses on the utilization of DC/AC inverters as a three-terminal element of power systems for the integration of renewable energy sources
  • Presents basic concepts of phasor systems, three-phase systems, transformers, loads, DC/DC converters, DC/AC inverters, and AC/DC rectifiers
  • Contains problems at the end of each chapter
  • Supplementary material includes a solutions manual and PowerPoint presentations for instructors

Design of Smart Power Grid Renewable Energy Systems, Second Edition is a textbook for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals.

ALI KEYHANI, Ph.D., is a Professor in the Department of Electrical and Computer Engineering at The Ohio State University. He is a Fellow of the IEEE and a recipient of The Ohio State University, College of Engineering Research Award for 1989, 1999, and 2003. He has worked for Columbus and Southern Electric Power Company, Hewlett-Packard Co., Foster Wheeler Engineering, and TRW. He has performed research and consulting for American Electric Power, TRW Control, Liebert, Delphi Automotive Systems, General Electric, General Motors, and Ford. Dr. Keyhani has authored many articles in IEEE Transactions in energy conversion, power electronics, and power systems engineering.

Preface xv
Acknowledgments xvii
About The Companion Website xix
1 Global Warming And Mitigation 1(24)
1.1 Introduction—Motivation
1(1)
1.2 Fossil Fuel
1(1)
1.3 Energy Use and Industrialization
2(1)
1.4 New Oil Boom—Hydraulic Fracturing (Fracking)
3(1)
1.5 Nuclear Energy
3(1)
1.6 Global Warming
3(4)
1.7 Estimation of Future CO2
7(2)
1.8 Green and Renewable Energy Sources
9(3)
1.8.1 Hydrogen
9(1)
1.8.2 Solar and Photovoltaic
10(1)
1.8.3 Wind Power
11(1)
1.8.4 Geothermal
11(1)
1.8.5 Biomass
12(1)
1.8.6 Ethanol
12(1)
1.9 Energy Units and Conversions
12(4)
1.10 Estimating the Cost of Energy
16(3)
1.11 Conclusion
19(1)
Problems
19(2)
References
21(2)
Additional Resources
23(1)
Energy Quest
23(2)
2 Design Of Photovoltaic Microgrid Generating Station 25(84)
2.1 Introduction
25(5)
2.2 Photovoltaic Power Conversion
30(1)
2.3 Photovoltaic Materials
31(1)
2.4 Photovoltaic Characteristics
32(3)
2.5 Photovoltaic Efficiency
35(1)
2.6 PV Generating Station
35(4)
2.7 Design of Photovoltaic Grids
39(5)
2.7.1 Three-Phase Power
42(2)
2.8 Design Examples for PV Generating Stations
44(29)
2.9 Modeling of a Photovoltaic Module
73(1)
2.10 Measurement of Photovoltaic Performance
74(2)
2.11 Maximum Power Point of a Photovoltaic Plant
76(2)
2.12 Control of Maximum Power Point of Photovoltaic Plants
78(4)
2.13 Battery Storage Systems
82(2)
2.14 Storage Systems Based on a Single-Cell Battery
84(10)
2.15 The Energy Yield of a Photovoltaic Module and the Angle of Incidence
94(1)
2.16 Photovoltaic Generation Technology
95(1)
2.17 The Estimation of Photovoltaic Module Model Parameters
95(2)
2.18 Conclusion
97(1)
Problems
98(7)
References
105(2)
Additional Resources
107(2)
3 Fundamentals Of Power Circuit Analysis 109(69)
3.1 Introduction
109(1)
3.2 Batteries
110(1)
3.3 DC Circuits and Ohms Law
110(2)
3.4 Common Terms
112(1)
3.5 Elements of Electrical Circuits
112(7)
3.5.1 Inductors
113(3)
3.5.2 Capacitors
116(3)
3.6 Calculating Power Consumption
119(24)
3.6.1 Complex Domain
119(8)
3.6.2 Diodes
127(1)
3.6.3 Controllable Switch
127(1)
3.6.4 The DC—DC Converters in Green Energy Grids
128(1)
3.6.5 The Step-Up Converter
129(3)
3.6.6 The Step-Down Converter
132(6)
3.6.7 The Buck—Boost Converter
138(5)
3.7 Solar and Wind Power Grids
143(1)
3.8 Single-Phase DC—AC Inverters with Two Switches
144(10)
3.9 Single-Phase DC—AC Inverters with a Four-Switch Bipolar Switching Method
154(4)
3.10 Pulse Width Modulation with Unipolar Voltage Switching for a Single-Phase Full-Bridge Inverter
158(2)
3.11 Three-Phase DC—AC Inverters
160(7)
3.12 Microgrid of Renewable Energy
167(3)
3.13 The Sizing of an Inverter for Microgrid Operation
170(2)
Problems
172(5)
References
177(1)
4 Smart Devices And Energy Efficiency Monitoring Systems 178(15)
4.1 Introduction
178(1)
4.2 Measurement Methods
179(3)
4.2.1 Kilowatt-Hours Measurements
179(1)
4.2.2 Current and Voltage Measurements
180(1)
4.2.3 Power Measurements at 60 or 50 Hz
180(1)
4.2.4 Analog-to-Digital Conversions
181(1)
4.2.5 Root Mean Square (RMS) Measurement Devices
182(1)
4.3 Energy Monitoring Systems
182(1)
4.4 Smart Meters: Concepts, Features, and Roles in Smart Grid
183(7)
4.4.1 Power Monitoring and Scheduling
183(2)
4.4.2 Communication Systems
185(2)
4.4.3 Network Security and Software
187(3)
4.4.4 Smart Phone Applications
190(1)
4.5 Summary
190(1)
Problems
191(1)
References
191(2)
5 Load Estimation And Classification 193(24)
5.1 Introduction
193(1)
5.2 Load Estimation of a Residential Load
193(17)
5.3 Service Feeder and Metering
210(3)
5.3.1 Assumed Wattages
210(3)
Problems
213(3)
References
216(1)
6 Energy Saving And Cost Estimation Of Incandescent And Light Emitting Diodes 217(11)
6.1 Lighting
217(1)
6.2 Comparative Performance of LED, Incandescent, and LFC Lighting
218(6)
6.3 LED Energy Saving
224(1)
6.4 Return on Investment on LED Lighting
225(1)
6.5 The Annual Carbon Emissions
226(1)
References
226(2)
7 Three-Phase Power And Microgrids 228(76)
7.1 Introduction
228(1)
7.2 The Basic Concept of AC Generator
228(1)
7.3 Three-Phase AC Generator
229(3)
7.4 The Synchronization of Generator to Power Grids
232(1)
7.5 Power Factor and Active and Reactive Power Concepts
233(3)
7.6 Three-Phase Power Grids
236(3)
7.7 Calculating Power Consumption
239(2)
7.8 One-Line Diagram Representation of Three-Phase Power Grids
241(4)
7.9 Load Models
245(4)
7.10 Transformers in Electric Power Grids
249(6)
7.10.1 A Short History of Transformers
249(1)
7.10.2 Transmission Voltage
250(1)
7.10.3 Transformers
251(4)
7.11 Modeling a Microgrid System
255(10)
7.11.1 The Per Unit System
255(10)
7.12 Modeling Three-Phase Transformers
265(3)
7.13 Tap Changing Transformers
268(2)
7.14 Modeling Transmission Lines
270(12)
7.15 The Construction of a Power Grid System
282(7)
7.16 Microgrid of Renewable Energy Systems
289(5)
Problems
294(8)
References
302(2)
8 Microgrid Wind Energy Systems 304(57)
8.1 Introduction
304(1)
8.2 Wind Power
305(4)
8.3 Wind Turbine Generators
309(4)
8.4 The Modeling of Induction Machines
313(12)
8.4.1 Calculation of Slip
320(1)
8.4.2 The Equivalent Circuit of an Induction Machine
321(4)
8.5 Power Flow Analysis of an Induction Machine
325(4)
8.6 The Operation of an Induction Generator
329(13)
8.7 Dynamic Performance
342(7)
8.8 The Doubly Fed Induction Generator
349(2)
8.9 Brushless Doubly Fed Induction Generator Systems
351(1)
8.10 Variable-Speed Permanent Magnet Generators
352(1)
8.11 A Variable-Speed Synchronous Generator
353(1)
8.12 A Variable-Speed Generator With A Converter Isolated from the Grid
354(2)
Problems
356(2)
References
358(3)
9 Market Operation Of Smart Power Grids 361(52)
9.1 Introduction—Classical Power Grids
361(1)
9.2 Power Grid Operation
362(6)
9.3 Vertically and Market-Structured Power Grid
368(3)
9.3.1 Who Controls the Power Grids?
369(2)
9.4 The Operation Control of a Power Grid
371(1)
9.5 Load-Frequency Control
372(6)
9.6 Automatic Generation Control
378(5)
9.7 Operating Reserve Calculation
383(1)
9.8 Basic Concepts of a Smart Power Grid
383(9)
9.9 The Load Factor
392(2)
9.10 The Load Factor and Real-Time Pricing
394(3)
9.11 A Cyber-Controlled Smart Grid
397(3)
9.12 Smart Grid Development
400(1)
9.13 Smart Microgrid Renewable and Green Energy Systems
401(7)
9.14 The Impact of Renewable Power on Voltage Stability and Reactive Power Supply
408(1)
Problems
409(1)
References
410(1)
Additional Resources
411(2)
10 Load Flow Analysis Of Power Grids And Microgrids 413(75)
10.1 Introduction
413(1)
10.2 Voltage Calculation in Power Grid Analysis
414(3)
10.3 The Power Flow Problem
417(1)
10.4 Load Flow Study as a Power System Engineering Tool
418(1)
10.5 Bus Types
419(4)
10.6 General Formulation of the Power Flow Problem
423(3)
10.7 The Bus Admittance Model
426(1)
10.8 The Bus Impedance Matrix Model
427(2)
10.9 Formulation of the Load Flow Problem
429(3)
10.10 The Gauss—Seidel YBus Algorithm
432(5)
10.11 The Gauss—Seidel ZBus Algorithm
437(6)
10.12 Comparison of the YBus and ZBus Power Flow Solution Methods
443(1)
10.13 The Synchronous and Asynchronous Operation of Microgrids
444(1)
10.14 An Advanced Power Flow Solution Method: The Newton—Raphson Algorithm
445(10)
10.14.1 The Newton—Raphson Algorithm
449(6)
10.15 General Formulation of the Newton—Raphson Algorithm
455(3)
10.16 The Decoupled Newton—Raphson Algorithm
458(2)
10.17 The Fast Decoupled Load Flow Algorithm
460(1)
10.18 Analysis of a Power Flow Problem
461(12)
Problems
473(12)
References
485(1)
Additional Resources
486(2)
11 Power Grid And Microgrid Fault Studies 488(69)
11.1 Introduction
488(1)
11.2 Power Grid Fault Current Calculation
489(3)
11.3 Symmetrical Components
492(6)
11.4 Sequence Networks for Power Generators
498(3)
11.5 The Modeling of a Photovoltaic-Generating Station
501(1)
11.6 Sequence Networks for Balanced Three-Phase Transmission Lines
501(3)
11.7 Ground Current Flow in Balanced Three-Phase Transformers
504(2)
11.8 Zero Sequence Network
506(6)
11.8.1 Transformers
506(2)
11.8.2 Load Connections
508(1)
11.8.3 Power Grid
508(4)
11.9 Fault Studies
512(38)
11.9.1 Balanced Three-Phase Fault Analysis
514(17)
11.9.2 Unbalanced Faults
531(1)
11.9.3 Single Line-to-Ground Faults
532(2)
11.9.4 Double Line-to-Ground Faults
534(2)
11.9.5 Line-to-Line Faults
536(14)
Problems
550(5)
References
555(2)
Index 557
Ali Keyhani, PhD, is a Professor in the Department of Electrical and Computer Engineering at The Ohio State University. He is a Fellow of the IEEE and a recipient of The Ohio State University, College of Engineering Research Award for 1989, 1999, and 2003. He has worked for companies such as Columbus and Southern Electric Power Company, Hewlett-Packard Co., Foster Wheeler Engineering, and TRW. He has performed research and consulting for American Electric Power, TRW Control, Liebert, Delphi Automotive Systems, General Electric, General Motors, and Ford. Dr. Keyhani has authored many articles in IEEE Transactions in Energy Conversion, Power Electronics, and Power Systems Engineering.