Muutke küpsiste eelistusi

E-raamat: Design of Unmanned Aerial Systems

Series edited by (MIT), Series edited by (University of Liverpool, UK), Series edited by (BAE Systems, UK), (Daniel Webster College, USA)
  • Formaat: EPUB+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 25-Mar-2020
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119508625
  • Formaat - EPUB+DRM
  • Hind: 145,67 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Aerospace Series
  • Ilmumisaeg: 25-Mar-2020
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119508625

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Provides a comprehensive introduction to the design and analysis of unmanned aircraft systems with a systems perspective

Written for students and engineers who are new to the field of unmanned aerial vehicle design, this book teaches the many UAV design techniques being used today and demonstrates how to apply aeronautical science concepts to their design. 

Design of Unmanned Aerial Systems covers the design of UAVs in three sections—vehicle design, autopilot design, and ground systems design—in a way that allows readers to fully comprehend the science behind the subject so that they can then demonstrate creativity in the application of these concepts on their own. It teaches students and engineers all about: UAV classifications, design groups, design requirements, mission planning, conceptual design, detail design, and design procedures. It provides them with in-depth knowledge of ground stations, power systems, propulsion systems, automatic flight control systems, guidance systems, navigation systems, and launch and recovery systems. Students will also learn about payloads, manufacturing considerations, design challenges, flight software, microcontroller, and design examples. In addition, the book places major emphasis on the automatic flight control systems and autopilots.

  • Provides design steps and procedures for each major component
  • Presents several fully solved, step-by-step examples at component level
  • Includes numerous UAV figures/images to emphasize the application of the concepts
  • Describes real stories that stress the significance of safety in UAV design
  • Offers various UAV configurations, geometries, and weight data to demonstrate the real-world applications and examples
  • Covers a variety of design techniques/processes such that the designer has freedom and flexibility to satisfy the design requirements in several ways
  • Features many end-of-chapter problems for readers to practice

Design of Unmanned Aerial Systems is an excellent text for courses in the design of unmanned aerial vehicles at both the upper division undergraduate and beginning graduate levels.

Preface xix
Acronyms xxv
Nomenclature xxix
About the Companion Website xxxvii
1 Design Fundamentals
1(34)
1.1 Introduction
2(3)
1.2 UAV Classifications
5(3)
1.3 Review of a Few Successful UAVs
8(4)
1.3.1 Global Hawk
8(1)
1.3.2 RQ-1A Predator
9(1)
1.3.3 MQ-9 Predator B Reaper
9(1)
1.3.4 RQ-5A Hunter
10(1)
1.3.5 RQ-7 Shadow 200
10(1)
1.3.6 RQ-2A Pioneer
11(1)
1.3.7 RQ-170 Sentinel
11(1)
1.3.8 X-45A UCAV
12(1)
1.3.9 Epson Micro-flying Robot
12(1)
1.4 Design Project Planning
12(1)
1.5 Decision Making
13(2)
1.6 Design Criteria, Objectives, and Priorities
15(2)
1.7 Feasibility Analysis
17(1)
1.8 Design Groups
17(1)
1.9 Design Process
18(1)
1.10 Systems Engineering Approach
19(2)
1.11 UAV Conceptual Design
21(6)
1.12 UAV Preliminary Design
27(1)
1.13 UAV Detail Design
28(2)
1.14 Design Review, Evaluation, Feedback
30(1)
1.15 UAV Design Steps
30(2)
Questions
32(3)
2 Preliminary Design
35(30)
2.1 Introduction
35(1)
2.2 Maximum Takeoff Weight Estimation
36(1)
2.3 Weight Buildup
36(1)
2.4 Payload Weight
37(1)
2.5 Autopilot Weight
37(2)
2.6 Fuel Weight
39(4)
2.7 Battery Weight
43(4)
2.8 Empty Weight
47(1)
2.9 Wing and Engine Sizing
48(4)
2.10 Quadcopter Configuration
52(8)
Questions
60(1)
Problems
61(4)
3 Design Disciplines
65(36)
3.1 Introduction
66(1)
3.2 Aerodynamic Design
67(2)
3.3 Structural Design
69(2)
3.4 Propulsion System Design
71(4)
3.4.1 General Design Guidelines
72(2)
3.4.2 Electric Engines
74(1)
3.5 Landing Gear Design
75(3)
3.6 Mechanical and Power Transmission Systems Design
78(2)
3.7 Electric Systems
80(5)
3.7.1 Fundamentals
80(1)
3.7.2 Safety Recommendations
81(1)
3.7.3 Wiring Diagrams
82(1)
3.7.4 Wire Insulation and Shielding
83(1)
3.7.5 Batteries
83(1)
3.7.6 Generator
84(1)
3.8 Control Surfaces Design
85(5)
3.9 Safety Analysis
90(5)
3.9.1 Design Lessons Learned
91(2)
3.9.2 Likely Failure Modes of Sub-Systems/Components
93(2)
3.10 Installation Guidelines
95(1)
3.10.1 GPS/Compass
95(1)
3.10.2 IMU
95(1)
3.10.3 Electric Motor
96(1)
Questions
96(1)
Design Questions
97(2)
Problems
99(2)
4 Aerodynamic Design
101(40)
4.1 Introduction
102(1)
4.2 Fundamentals of Aerodynamics
103(1)
4.3 Wing Design
104(9)
4.3.1 Wing Design Procedure
105(1)
4.3.2 Airfoil Selection/Design
106(2)
4.3.3 Wing Design Technique
108(5)
4.3.4 Wing Design Steps
113(1)
4.4 Tail Design
113(6)
4.4.1 Design Procedure
113(2)
4.4.2 Tail Configuration
115(1)
4.4.3 Horizontal Tail Design Technique
116(1)
4.4.4 Tail Planform Area and Tail Arm
117(1)
4.4.5 Tail Airfoil Section
118(1)
4.4.6 Tail Incidence
119(1)
4.4.7 Other Horizontal Tail Parameters
119(1)
4.5 Vertical Tail Design
119(4)
4.5.1 Parameters
119(1)
4.5.2 Vertical Tail Location
120(1)
4.5.3 Vertical Tail Moment Arm (lvt)
120(1)
4.5.4 Planform Area (Sv)
120(1)
4.5.5 Incidence (iv)
121(1)
4.5.6 Other Vertical Tail Parameters
122(1)
4.5.7 Vertical Tail Design Technique
122(1)
4.6 Fuselage Design
123(7)
4.6.1 Fuselage Design Fundamentals
123(1)
4.6.2 Fuselage Aerodynamics
123(3)
4.6.3 Autopilot Compartment
126(1)
4.6.4 Optimum Length-to-Diameter Ratio
126(1)
4.6.5 Fuselage Aerodynamics
127(1)
4.6.6 Lofting
128(1)
4.6.7 Fuselage Design Steps
129(1)
4.7 Antenna
130(2)
4.7.1 Fixed Antenna
130(1)
4.7.2 Radar Dish Antenna
131(1)
4.7.3 Satellite Communication Antenna
131(1)
4.7.4 Antenna Design/Installation
132(1)
4.8 Aerodynamic Design of Quadcopters
132(1)
4.9 Aerodynamic Design Guidelines
133(1)
Questions
134(2)
Problems
136(5)
5 Fundamentals of Autopilot Design
141(54)
5.1 Introduction
142(4)
5.1.1 Autopilot and Human Operator
143(1)
5.1.2 Primary Subsystems of an Autopilot
144(1)
5.1.3 Autopilot Design or Selection
145(1)
5.2 Dynamic Modeling
146(7)
5.2.1 Modeling Technique
146(2)
5.2.2 Fundamental Model
148(2)
5.2.3 Transfer Function
150(2)
5.2.4 State-Space Representation
152(1)
5.3 Aerodynamic Forces and Moments
153(4)
5.3.1 Forces and Moments Equations
153(1)
5.3.2 Stability and Control Derivatives
154(1)
5.3.3 Non-dimensional Stability and Control Derivatives
154(1)
5.3.4 Dimensional Stability and Control Derivatives
155(1)
5.3.5 Coupling Stability Derivatives
156(1)
5.4 Simplification Techniques of Dynamic Models
157(4)
5.4.1 Linearization
157(1)
5.4.1.1 Taylor Series
158(1)
5.4.1.2 Direct Technique
159(1)
5.4.2 Decoupling
159(2)
5.5 Fixed-Wing UAV Dynamic Models
161(8)
5.5.1 Nonlinear Fully Coupled Equations of Motion
162(1)
5.5.2 Nonlinear Semi-Coupled Equations of Motion
162(1)
5.5.3 Nonlinear Decoupled Equations of Motion
163(1)
5.5.4 Linear Coupled Equations of Motion
163(2)
5.5.5 Linear Decoupled Equations of Motion
165(2)
5.5.6 Reformulated (Nonlinear Semi-Coupled) Equations of Motion
167(1)
5.5.7 Un-powered Gliding Equations of Motion
168(1)
5.6 Dynamic Model Approximation
169(1)
5.6.1 Pure Pitching Motion Approximation
169(1)
5.6.2 Pure Rolling Motion Approximation
169(1)
5.6.3 Pure Yawing Motion Approximation
169(1)
5.6.4 Longitudinal Oscillatory Modes Approximation
170(1)
5.7 Quadcopter (Rotary-Wing) Dynamic Model
170(6)
5.7.1 Overall Thrust of Four Motors
170(4)
5.7.2 Dynamic Model
174(1)
5.7.3 Simplified Dynamic Model
175(1)
5.8 Autopilot Categories
176(5)
5.8.1 Stability Augmentation
176(2)
5.8.2 Hold Functions
178(2)
5.8.3 Navigation Functions
180(1)
5.8.4 Command Augmentation Systems
180(1)
5.9 Flight Simulation -- Numerical Methods
181(4)
5.9.1 Numerical Integration
182(1)
5.9.2 Matlab/Simulink
182(2)
5.9.3 Hardware-In-the-Loop Simulation
184(1)
5.10 Flying Qualities for UAVs
185(2)
5.10.1 Fundamentals
185(1)
5.10.2 Classes, Categories, and Acceptability Levels
186(1)
5.10.3 Force Restrictions
186(1)
5.11 Autopilot Design Process
187(1)
Questions
188(2)
Problems
190(5)
6 Control System Design
195(60)
6.1 Introduction
196(1)
6.2 Fundamentals of Control Systems
197(6)
6.2.1 Elements, Concepts and Definitions
197(2)
6.2.2 Root Locus Design Technique
199(1)
6.2.3 Frequency Domain Design Technique
200(1)
6.2.4 Controller Configurations and Control Architectures
201(2)
6.3 Servo/Actuator
203(4)
6.3.1 Terminology
203(1)
6.3.2 Electric Motors
204(2)
6.3.3 Hydraulic Actuator
206(1)
6.3.4 Delay
206(1)
6.3.5 Saturation
207(1)
6.4 Flight Control Requirements
207(2)
6.4.1 Longitudinal Control Requirements
207(1)
6.4.2 Roll Control Requirements
208(1)
6.4.3 Directional Control Requirements
209(1)
6.5 Control Modes
209(14)
6.5.1 Coupled Control Modes
210(2)
6.5.2 Cruise Control
212(1)
6.5.3 Pitch-Attitude Hold
213(1)
6.5.4 Wing Leveler
214(1)
6.5.5 Yaw Damper
215(2)
6.5.6 Auto-Landing
217(1)
6.5.7 Turn Coordinator
218(5)
6.6 Controller Design
223(11)
6.6.1 PID Controller
223(1)
6.6.2 Optimal Control -- LQR
224(5)
6.6.3 Gain Scheduling
229(2)
6.6.4 Robust Control
231(2)
6.6.5 Digital Control
233(1)
6.7 Autonomy
234(3)
6.7.1 Classification
234(1)
6.7.2 Detect (i.e., Sense)-and-Avoid
235(1)
6.7.3 Automated Recovery
236(1)
6.7.4 Fault Monitoring
236(1)
6.7.5 Intelligent Flight Planning
236(1)
6.8 Manned-Unmanned Aircraft Teaming
237(6)
6.8.1 Need for Teaming
237(1)
6.8.2 Teaming Problem Formulation
237(2)
6.8.3 Decision Making Process
239(2)
6.8.4 Teaming Communication Process
241(1)
6.8.5 Teaming Laws
242(1)
6.9 Control System Design Process
243(3)
Questions
246(3)
Problems
249(6)
7 Guidance System Design
255(50)
7.1 Introduction
256(1)
7.2 Fundamentals
257(6)
7.2.1 Guidance Process
257(1)
7.2.2 Elements of Guidance System
258(1)
7.2.3 Guidance Components
259(1)
7.2.4 Target Detection
260(2)
7.2.5 Moving Target Tracking
262(1)
7.3 Guidance Laws
263(2)
7.4 Command Guidance Law
265(4)
7.5 PN Guidance Law
269(4)
7.6 Pursuit Guidance Law
273(1)
7.7 Waypoint Guidance Law
274(8)
7.7.1 Waypoints
274(1)
7.7.2 Types of Waypoint Guidance
275(1)
7.7.3 Segments of a Horizontal (Level) Trajectory
276(2)
7.7.4 Waypoint Guidance Algorithm
278(1)
7.7.4.1 Trajectory Smoother
278(1)
7.7.4.2 Trajectory Tracking
279(2)
7.7.5 UAV Maneuverability Evaluation
281(1)
7.8 Sense and Avoid
282(9)
7.8.1 Fundamentals
282(1)
7.8.2 Sensing Techniques
283(3)
7.8.3 Collision Avoidance
286(5)
7.9 Formation Flight
291(2)
7.10 Motion Planning and Trajectory Design
293(1)
7.11 Guidance Sensor -- Seeker
294(2)
7.12 Guidance System Design
296(2)
Questions
298(2)
Problems
300(5)
8 Navigation System Design
305(50)
8.1 Introduction
306(1)
8.2 Classifications
307(2)
8.3 Coordinate Systems
309(2)
8.3.1 Fixed and Moving Frames
309(1)
8.3.2 World Geodetic System
310(1)
8.4 Inertial Navigation System
311(4)
8.4.1 Fundamentals
311(2)
8.4.2 Navigation Equations
313(1)
8.4.3 Navigation Basic Calculations
313(1)
8.4.4 Geodetic Coordinates Calculations
314(1)
8.5 Kalman Filtering
315(2)
8.6 Global Positioning System
317(5)
8.6.1 Fundamentals
317(2)
8.6.2 Earth Longitude and Latitude
319(3)
8.6.3 Ground Speed Versus Airspeed
322(1)
8.7 Position Fixing Navigation
322(1)
8.7.1 Map Reading
322(1)
8.7.2 Celestial Navigation
322(1)
8.8 Navigation in Reduced Visibility Conditions
323(1)
8.9 Inertial Navigation Sensors
323(12)
8.9.1 Primary Functions
323(1)
8.9.2 Accelerometer
324(2)
8.9.3 Gyroscope
326(3)
8.9.4 Airspeed Sensor
329(1)
8.9.5 Altitude Sensor
330(1)
8.9.5.1 Radar Altimeter
330(1)
8.9.5.2 Mechanical Altimeter
330(2)
8.9.6 Pressure Sensor
332(1)
8.9.7 Clock/Timer
332(1)
8.9.8 Compass
332(1)
8.9.9 Magnetometer
333(1)
8.9.10 MEMS Inertial Module
333(2)
8.9.11 Transponder
335(1)
8.10 Navigation Disturbances
335(10)
8.10.1 Wind
335(2)
8.10.2 Gust and Disturbance
337(2)
8.10.3 Measurement Noise
339(1)
8.10.4 Drift
340(1)
8.10.4.1 Drift Due to Rotation of Rotor/Propeller
340(2)
8.10.4.2 Drift Due to Wind
342(1)
8.10.5 Coriolis Effect
342(2)
8.10.6 Magnetic Deviation
344(1)
8.11 Navigation System Design
345(3)
8.11.1 Design Requirements
345(1)
8.11.2 Design Flowchart
346(1)
8.11.3 Design Guidelines
347(1)
Questions
348(4)
Problems
352(3)
9 Microcontroller
355(44)
9.1 Introduction
356(2)
9.2 Basic Fundamentals
358(9)
9.2.1 Microcontroller Basics
358(3)
9.2.2 Microcontroller Versus Microprocessor
361(1)
9.2.3 Packaging Formats
362(1)
9.2.4 Modules/Components
363(2)
9.2.5 Atmel ATmega644P
365(2)
9.3 Microcontroller Circuitry
367(2)
9.3.1 Microcontroller Circuit Board
367(1)
9.3.2 Electric Motor
367(1)
9.3.3 Servo Motor
368(1)
9.3.4 Sensors
368(1)
9.3.5 Potentiometer
369(1)
9.4 Embedded Systems
369(3)
9.4.1 Introduction
369(1)
9.4.2 Embedded Processors
369(1)
9.4.3 Signal Flow
370(1)
9.5 Microcontroller Programming
371(1)
9.5.1 Software Development
371(1)
9.5.2 Operating System
371(1)
9.5.3 Management Software
371(1)
9.5.4 Microcontroller Programing
372(1)
9.5.5 Software Integration
372(1)
9.5.6 High-Level Programming Languages
373(1)
9.5.7 Compiler
374(1)
9.5.8 Debugging
374(1)
9.6 Programming in C
374(3)
9.6.1 Introduction
374(1)
9.6.2 General Structure of a C Program
374(1)
9.6.3 Example Code -- Detecting a Dead LED
375(2)
9.6 A Execution of a C Program
377(1)
9.7 Arduino
378(4)
9.7.1 Arduino Overview
378(1)
9.7.2 Arduino Programming
379(1)
9.7.3 Arduino Uno Board
380(2)
9.7 A Open-Loop Control of an Elevator
382(2)
9.7.5 Arduino and Matlab
383(1)
9.8 Open-Source Commercial Autopilots
384(3)
9.8.1 ArduPilot
384(1)
9.8.2 PX4 Pixhawk Autopilot
385(1)
9.8.3 Micropilot
386(1)
9.8.4 DJI WooKong Autopilot
387(1)
9.9 Design Procedure
387(1)
9.10 Design Project
388(5)
9.10.1 Problem Statement
389(1)
9.10.2 Design and Implementation
389(1)
9.10.3 Arduino Code
389(2)
9.10.4 Procedure
391(1)
9.10.5 MATLAB Code for Real-Time Plotting
392(1)
9.10.6 System Response and Results
393(1)
Questions
393(2)
Problems
395(2)
Design Projects
397(2)
10 Launch and Recovery Systems Design
399(46)
10.1 Introduction
400(2)
10.2 Launch Technologies and Techniques
402(8)
10.2.1 Rocket Assisted Launch
402(1)
10.2.2 Bungee Cord Catapult Launch
403(3)
10.2.3 Pneumatic Launchers
406(1)
10.2.4 Hydraulic Launchers
407(1)
10.2.5 Air Launch
408(1)
10.2.6 Hand Launch
409(1)
10.3 Launcher Equipment
410(5)
10.3.1 Elements
410(1)
10.3.2 Ramp/Slipway
410(2)
10.3.3 Push Mechanism
412(1)
10.3.4 Elevation Platform
412(3)
10.3.5 Power Supply
415(1)
10.4 Fundamentals of Launch
415(7)
10.4.1 Fundamental Principles
415(1)
10.4.2 Governing Launch Equations
416(3)
10.4.3 Wing and Horizontal Tail Contributions
419(1)
10.4.4 UAV Longitudinal Trim
420(2)
10.5 Elevation Mechanism Design
422(2)
10.5.1 Elevation Mechanism Operation
422(1)
10.5.2 Hydraulic and Pneumatic Actuators
423(1)
10.6 VTOL
424(1)
10.7 Recovery Technologies and Techniques
424(5)
10.7.1 Fundamentals
424(1)
10.7.2 Net Recovery
425(1)
10.7.3 Arresting Line
426(1)
10.7.4 Skyhook
427(1)
10.7.5 Windsock
427(2)
10.7.6 Parachute
429(1)
10.8 Recovery Fundamentals
429(2)
10.8.1 Parachute
429(2)
10.8.2 Impact Recovery
431(1)
10.9 Launch/Recovery Systems Mobility
431(2)
10.9.1 Mobility Requirements
431(1)
10.9.2 Conventional Wheeled Vehicle
432(1)
10.10 Launch and Recovery Systems Design
433(4)
10.10.1 Launch and Recovery Techniques Selection
433(1)
10.10.2 Launch System Design
434(2)
10.10.3 Recovery System Design
436(1)
Questions
437(3)
Problems
440(3)
Design Projects
443(2)
11 Ground Control Station
445(42)
11.1 Introduction
446(2)
11.2 GCS Subsystems
448(1)
11.3 Types of Ground Stations
448(12)
11.3.1 Handheld Radio Controller
449(1)
11.3.1.1 General Structure
449(1)
11.3.1.2 Stick
450(2)
11.3.1.3 Potentiometer
452(1)
11.3.2 Portable GCS
453(1)
11.3.3 Mobile Truck
454(4)
11.3.4 Central Command Station
458(1)
11.3.5 Sea Control Station
459(1)
11.3.6 General GCS
459(1)
11.4 GCS of a Number of UAVs
460(4)
11.4.1 Global Hawk
460(1)
11.4.2 Predator
461(1)
11.4.3 MQ-5A Hunter
462(1)
11.4.4 Shadow 200
462(1)
11.4.5 DJI Phantom
463(1)
11.4.6 Yamaha RMAX Unmanned Helicopter
464(1)
11.5 Human-Related Design Requirements
464(5)
11.5.1 Number of Pilots/Operators in Ground Station
464(1)
11.5.2 Ergonomics
464(2)
11.5.3 Features of a Human Pilot/Operator
466(1)
11.5.4 Console Dimensions and Limits
467(2)
11.6 Support Equipment
469(3)
11.6.1 Introduction
469(1)
11.6.2 Transportation Equipment
470(1)
11.6.3 Power Generator
471(1)
11.6.4 HVAC System
471(1)
11.6.5 Other Items
471(1)
11.7 GCS Design Guidelines
472(1)
Questions
473(2)
Problems
475(1)
Design Problems
476(1)
Laboratory Experiments
477(10)
12 Payloads Selection/Design
487(44)
12.1 Introduction
482(1)
12.2 Elements of Payload
483(1)
12.2.1 Payload Definition
483(1)
12.2.2 Payloads Classifications
484(1)
12.3 Payloads of a Few UAVs
484(3)
12.3.1 RQ-4 Global Hawk
485(1)
12.3.2 MQ-9 Predator B Reaper
485(1)
12.3.3 RQ-7 Shadow 200
486(1)
12.3.4 RQ-5A Hunter
486(1)
12.3.5 DJI Phantom Quadcopter
486(1)
12.3.6 X-45 UCAV
487(1)
12.3.7 Yamaha RMAX
487(1)
12.4 Cargo or Freight Payload
487(1)
12.5 Reconnaissance/Surveillance Payload
488(17)
12.5.1 Electro-Optical Camera
489(5)
12.5.2 Infra-Red Camera
494(1)
12.5.3 Radar
495(1)
12.5.3.1 Fundamentals
495(2)
12.5.3.2 Radar Governing Equations
497(1)
12.5.3.3 An Example
498(2)
12.5.3.4 A Few Applications
500(2)
12.5.4 Lidar
502(1)
12.5.5 Range Finder
502(2)
12.5.6 Laser Designator
504(1)
12.5.7 Radar Warning Receiver
505(1)
12.6 Scientific Payloads
505(3)
12.6.1 Classifications
505(2)
12.6.2 Temperature Sensor
507(1)
12.7 Military Payloads
508(1)
12.8 Electronic Counter Measure Payloads
509(2)
12.9 Payload Installation
511(1)
12.9.1 Payload Wiring
511(1)
12.9.2 Payload Location
512(1)
12.9.3 Payload Aerodynamics
513(4)
12.9.4 Payload-Structure Integration
517(2)
12.9.5 Payload Stabilization
519(1)
12.10 Payload Control and Management
520(1)
12.11 Payload Selection/Design Guidelines
520(3)
Questions
523(2)
Problems
525(2)
Design Problems
527(4)
13 Communications System Design
531(34)
13.1 Fundamentals
532(2)
13.2 Data Link
534(2)
13.3 Transmitter
536(1)
13.4 Receiver
537(2)
13.5 Antenna
539(2)
13.6 Radio Frequency
541(3)
13.7 Encryption
544(1)
13.8 Communications Systems of a Few UAVs
545(2)
13.9 Installation
547(1)
13.10 Communications System Design
547(1)
13.11 Bi-directional Communications Using Arduino Boards
548(10)
13.11.1 Communications Modules
548(1)
13.11.2 NRF24L01 Module
549(4)
13.11.3 Bluetooth Module
553(1)
13.11.4 An Application
554(4)
Questions
558(2)
Problems
560(1)
Laboratory Experiments
561(1)
Design Projects
562(3)
14 Design Analysis and Feedbacks
565(1)
14.1 Introduction
566(1)
14.2 Design Feedbacks
567(2)
14.3 Weight and Balance
569(4)
14.3.1 UAV Center of Gravity
569(2)
14.3.2 Weight Distribution
571(2)
14.4 Stability Analysis
573(1)
14.4.1 Fundamentals
573(1)
14.4.2 Static Longitudinal Stability
574(1)
14.4.3 Dynamic Longitudinal Stability
574(1)
14.4.4 Static Lateral-Directional Stability
575(1)
14.4.5 Dynamic Lateral-Directional Stability
576(1)
14.4.6 Typical Values for Stability Derivatives
577(2)
14.5 Controllability Analysis
579(3)
14.5.1 Longitudinal Control
579(1)
14.5.2 Lateral Control
580(1)
14.5.3 Directional Control
581(1)
14.5.4 Typical Values for Control Derivatives
582(1)
14.6 Flight Performance Analysis
582(9)
14.6.1 Maximum Speed
582(2)
14.6.2 Maximum Range
584(1)
14.6.3 Maximum Endurance
584(1)
14.6.4 Climb Performance
585(1)
14.6.4.1 Fastest Climb
585(1)
14.6.4.2 Steepest Climb
586(1)
14.6.5 Takeoff Performance
587(1)
14.6.6 Turn Performance
588(2)
14.6.7 Absolute Ceiling
590(1)
14.6.7.1 UAV with Jet Engine(s)
591(1)
14.6.7.2 UAV with Propeller-driven Engine(s)
591(1)
14.7 Cost Analysis
591(2)
Questions
593(2)
Problems
595(6)
References 601(8)
Index 609
Mohammad H. Sadraey, PhD, is Associate Professor (Aeronautical Engineering) at Southern New Hampshire University. He has authored five books, including Aircraft Design: A Systems Engineering Approach and Aircraft Performance Analysis. He is a member of the American Institute of Aeronautics and Astronautics, the American Society for Engineering Education, and Sigma Gamma Tau Honor Society. Dr. Sadraey is also the guest editor of the Journal of Aerospace special issue on "Aircraft design".