Muutke küpsiste eelistusi

E-raamat: Discovery Science: 26th International Conference, DS 2023, Porto, Portugal, October 9-11, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the proceedings of the 26th International Conference on Discovery Science, DS 2023, which took place in Porto, Portugal, in October 2023. The 37 full papers and 10 short papers presented in this volume were carefully reviewed and selected from 133 submissions. They were organized in topical sections as follows: Machine learning methods and applications; natural language processing and social media analysis; interpretability and explainability in AI; data analysis and optimization; fairness, privacy and security in AI; control and spatio-temporal modeling; graph theory and network analysis; time series and forecasting; healthcare and biological data analysis; anomaly, outlier and novelty detection.

Ensembles of classifiers and quantifiers with data fusion for
Quantification Learning.- Exploring the Intricacies of Neural Network
Optimization.- Exploring the Reduction of Configuration Spaces of
Workflows.- iSOUP-SymRF: Symbolic feature ranking with random forests in
online multi-target regression.- Knowledge-Guided Additive Modeling For
Supervised Regression.- Audience Prediction for Game Streaming Channels Based
on Vectorization of User Comments.- From Tweets to Stance: An Unsupervised
Framework for User Stance Detection on Twitter.- GLORIA: A Graph
Convolutional Network-based Approach for Review Spam Detection.- Unmasking
COVID-19 False Information on Twitter: a Topic-based Approach with BERT.-
Unsupervised Key-Phrase Extraction from Long Texts with Multilingual Sentence
Transformers.- Counterfactuals Explanations for Outliers via Subspaces
Density Contrastive Loss.- Explainable Spatio-Temporal Graph
Modeling.- ProbabilisticScoring Lists for Interpretable Machine
Learning.- Refining Temporal Visualizations Using the Directional Coherence
Loss.- Semantic enrichment of explanations of AI models for healthcare.- Text
to Time Series Representations: Towards Interpretable Predictive
Models.- Enhancing intra-modal similarity in a cross-modal triplet
loss.- Exploring the Potential of Optimal Active Learning via a Non-myopic
Oracle Policy.- Extrapolation is Not the Same as Interpolation.- Gene
Interactions in Survival Data Analysis: A Data-driven Approach Using
Restricted Mean Survival Time and Literature Mining.- Joining Imputation and
Active Feature Acquisition for Cost Saving on Data Streams with Missing
Features.- EXPHLOT: EXplainable Privacy assessment for Human LOcation
Trajectories.- Fairness-aware Mixture of Experts with Interpretability
Budgets.- GenFair: A Genetic Fairness-Enhancing Data Generation
Framework.- Privacy-Preserving Learning of Random Forests Without Revealing
the Trees.- Unlearning Spurious Correlations in Chest X-ray
Classification.- Explaining the Chronological Attribution of Greek Papyri
Images.- Leveraging the Spatiotemporal Analysis of Meisho-e
Landscapes.- Predictive Inference Model of the Physical Environment that
emulates Predictive Coding.- Transferring a Learned Qualitative Cart-Pole
Control Model to Uneven Terrains.- Which Way to Go - Finding Frequent
Trajectories Through Clustering.- Boosting-based Construction of BDDs for
Linear Threshold Functions and  Its Application to Verification of Neural
Networks.- Interpretable Data Partitioning through Tree-based Clustering
Methods.- Jaccard-constrained dense subgraph discovery.- RIMBO - an ontology
for model revision databases.- Unsupervised Graph Neural Networks for Source
Code Similarity Detection.- A Universal Approach for Post-Correcting Time
Series.- Forecasts: Reducing Long-term ErrorsIn Multistep
Scenarios.- Explainable Deep Learning-based Solar Flare Prediction with post
hoc Attention for Operational Forecasting.- Pseudo Session-Based
Recommendation with Hierarchical Embedding and Session Attributes.- Chance
and the predictive limit in  basketball (both college and
professional).- Exploring Label Correlations for Quantification of ICD
Codes.- LGEM+: a first-order logic framework for automated improvement of
metabolic network models through abduction.- Predicting age from human lung
tissue through multi-modal data integration.- Error Analysis on Industry
Data:Using Weak Segment Detection for Local Model Agnostic Prediction
Intervals.- HEART: Heterogeneous Log Anomaly Detection using Robust
Transformers.- Multi-Kernel Time Series Outlier Detection.- Toward
Streamlining the Evaluation of Novelty Detection in Data Streams.