Muutke küpsiste eelistusi

E-raamat: Document Analysis and Recognition - ICDAR 2021: 16th International Conference, Lausanne, Switzerland, September 5-10, 2021, Proceedings, Part I

Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.

The papers are organized into the following topical sections: historical document analysis, document analysis systems, handwriting recognition, scene text detection and recognition, document image processing, natural language processing (NLP) for document understanding, and graphics, diagram and math recognition.


Historical Document Analysis 1.- BoundaryNet: An Attentive Deep Network
with Fast Marching Distance Maps for Semi-automatic Layout Annotation.-
Pho(SC)Net: An Approach Towards Zero-shot Word Image Recognition in
Historical Documents.- Versailles-FP dataset: Wall Detection in Ancient Floor
Plans.- Graph Convolutional Neural Networks for Learning Attribute
Representations for Word Spotting.- Context Aware Generation of Cuneiform
Signs.- Adaptive Scaling for Archival Table Structure Recognition.- Document
Analysis Systems.- LGPMA: Complicated Table Structure Recognition with Local
and Global Pyramid Mask Alignment.- VSR: A Unified Framework for Document
Layout Analysis combining Vision, Semantics and Relations.- Layout-Parser:  A
Unified Toolkit for Deep Learning Based Document Image Analysis.-
Understanding and Mitigating the Impact of Model Compression for Document
Image Classification.- Hierarchical and Multimodal Classification of Images
from Soil Remediation Reports.- Competition and Collaboration in Document
Analysis and Recognition.- Handwriting Recognition.- 2D Self-Attention
Convolutional Recurrent Network for Offline Handwritten Text Recognition.-
Handwritten Text Recognition with Convolutional Prototype Network and Most
Aligned Frame Based CTC Training.- Online Spatio-Temporal 3D Convolutional
Neural Network for Early Recognition of Handwritten Gestures.- Mix-Up
Augmentation for Oracle Character Recognition with Imbalanced Data
Distribution.- Radical Composition Network for Chinese Character Generation.-
SmartPatch: Improving Handwritten Word Imitation with Patch Discriminators.-
Scene Text Detection and Recognition.- Reciprocal Feature Learning via
Explicit and Implicit Tasks in Scene Text Recognition.- Text Detection by
Jointly Learning Character and Word Regions.- Vision Transformer for Fast and
Efficient Scene Text Recognition.- Look, Read and Ask: Learning to Ask
Questions by Reading Text in Images.- CATNet: Scene Text Recognition Guided
by Concatenating Augmented Text Features.- Explore Hierarchical Relations
Reasoning and Global Information Aggregation.- Historical Document Analysis
2.- One-Model Ensemble-Learning for Text Recognition of Historical
Printings.- On the use of attention in deep learning based denoising method
for ancient Cham inscription images.- Visual FUDGE: Form Understanding via
Dynamic Graph Editing.- Annotation-Free Character Detection in Historical
Vietnamese Stele Images.- Document Image Processing.- DocReader: Bounding-Box
Free Training of a Document Information Extraction Model.- Document Dewarping
with Control Points.- Unknown-box Approximation to Improve Optical Character
Recognition Performance.- Document Domain Randomization for Deep Learning
Document Layout Extraction.- NLP for Document Understanding.- Distilling the
Documents for Relation Extraction by Topic Segmentation.- LAMBERT:
Layout-Aware Language Modeling for Information Extraction.- ViBERTgrid: A
Jointly Trained Multi-Modal 2D Document Representation for Key Information
Extraction from Documents.- Kleister: Key Information Extraction Datasets
Involving Long Documents with Complex Layouts.- Graphics, Diagram, and Math
Recognition.- Towards an efficient framework for Data Extraction from Chart
Images.- Geometric Object 3D Reconstruction From Single Line Drawings Image
Based on a Network for Classification and Sketch Extraction.- DiagramNet:
Hand-drawn Diagram Recognition using Visual Arrow-relation Detection.-
Formula Citation Graph Based Mathematical Information Retrieval.