Muutke küpsiste eelistusi

E-raamat: Electromagnetic and Acoustic Wave Tomography: Direct and Inverse Problems in Practical Applications

Edited by , Edited by
  • Formaat: 380 pages
  • Ilmumisaeg: 14-Jun-2018
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429948411
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 58,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 380 pages
  • Ilmumisaeg: 14-Jun-2018
  • Kirjastus: CRC Press
  • Keel: eng
  • ISBN-13: 9780429948411
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book discusses the development of radio-wave tomography methods as a means of remote non-destructive testing, diagnostics of the internal structure of semi-transparent media, and reconstruction of the shapes of opaque objects based on multi-angle sounding. It describes physical-mathematical models of systems designed to reconstruct images of hidden objects, based on tomographic processing of multi-angle remote measurements of scattered radio and acoustic (ultrasonic) wave radiation.

Preface vii
Acknowledgments xv
Editors xvii
Contributors xix
Section I: Theoretical Fundamentals Of Wave Tomography
1 Mathematical Fundamentals to Inverse Problems
3(14)
Vladimir Yakubov
Sergey Shipilov
Nathan Blaunstein
1.1 Direct and Inverse Problems: Algebraic Approach
4(1)
1.2 Tikhonov Definition of Well-Posed Problem: Tikhonov Regularization
5(3)
1.3 Least Squares Method
8(1)
1.4 Singular-Value Decomposition: Moore-Penrose Matrix
9(1)
1.5 Singular Regularization
10(1)
1.6 Levenberg-Marquardt Algorithm for Non-Linear Equations Solution
11(1)
1.7 Iteration Algorithms for Solution of Inverse Problems
12(2)
1.8 Solution of Convolution Integral Equation and Wiener Filtering
14(1)
References
15(2)
2 Theoretical Overview of Wave Tomography
17(30)
Vladimir Yakubov
Sergey Shipilov
Dmitry Sukhanov
Andrey Klokov
2.1 Method of Inverse Projections
18(1)
2.2 Method of Fourier Synthesis Based on Projections of Shadowing
19(4)
2.3 Method of Double Focusing
23(5)
2.4 Radio Wave Tomography Synthesis: Stoles Method
28(5)
2.5 Transmission Tomography of the Semitransparent Media Based on the Kirchhoff Approximation
33(3)
2.6 Transmission Tomography of Opaque Objects
36(3)
2.7 Linear-Frequency-Modulated Radiation Tomography Technique
39(3)
2.8 Incoherent Tomography for Reconstruction of Objects Hidden in Clutter
42(3)
References
45(2)
3 Special Theoretical Approaches in Wave Tomography
47(32)
Vladimir Yakubov
Sergey Shipilov
Dmitry Sukhanov
Andrey Klokov
Nathan Blaunstein
3.1 Wave Location Tomography
48(17)
3.1.1 General Solution of Radio-Location Tomography
48(2)
3.1.2 Matched Filtering Method for Definition of Radiation Sources Distribution
50(1)
3.1.3 Method of Migration in Spatiotemporal Region by Use of Pulse Signals
51(3)
3.1.4 Method of Synthesized Focusing
54(2)
3.1.5 Single Focusing at the Boundary of Two Media
56(4)
3.1.6 Two-Step Focusing
60(3)
3.1.7 Group Focusing Technique
63(2)
3.2 Method of Refocusing
65(4)
3.3 Single-Side Monostatic Tomography of Non-Transparent Objects
69(1)
3.4 Diffraction Tomography Techniques
70(5)
3.4.1 Diffraction Tomography Method Based on Rytov Approximation
72(1)
3.4.2 Method of Diffraction Tomography Based on Feynman's Path Integral
73(2)
References
75(4)
4 Low-Frequency Magnetic and Electrostatic Tomography
79(10)
Vladimir Yakubov
Sergey Shipilov
Dmitry Sukhanov
Andrey Klokov
4.1 Low-Frequency Magnetic Tomography
79(5)
4.2 Impedance Electrostatic Tomography Methods
84(2)
References
86(3)
5 Eddy Current Tomography
89(32)
Nathan Blaunstein
Alexey Vertiy
5.1 Overview of Methodology
89(5)
5.2 Methods of Inverse Problem Solution Using Eddy Current Testing
94(8)
5.3 Theoretical Consideration of Diffraction Tomography Approach
102(13)
5.4 Conclusion
115(1)
References
116(5)
Section II: Experimental Verification Of Wave Tomography Theoretical Framework
6 Radio Tomography of Various Objects Hidden in Clutter Conditions
121(46)
Vladimir Yakubov
Sergey Shipilov
Dmitry Sukhanov
Andrey Klokov
6.1 Special Experimental Setup and Antennas
122(8)
6.2 Radio Tomography Based on UWB Tomographic Synthesis
130(16)
6.2.1 UWB Tomographic Synthesis of Building Constructions
130(8)
6.2.2 UWB Tomographic Synthesis of Bags and Luggage
138(1)
6.2.3 UWB Tomographic Synthesis of Object with Metallic Inclusions
138(8)
6.3 Tomography Based on Linear Frequency Modulation Radiation
146(1)
6.4 Transmission Tomography of Semitransparent Objects
147(5)
6.4.1 Experimental Setup
148(3)
6.4.2 Tomography of Semitransparent Objects
151(1)
6.5 Radio Tomography of Non-Transparent Objects
152(11)
6.5.1 Transmission Tomography of Form of Radio-Opaque Object
153(3)
6.5.2 Multiple-Angle Tomography of Opaque Objects' Shapes
156(2)
6.5.3 Unilateral Location Tomography of the Shapes of Radiopaque Objects
158(1)
6.5.4 Recovery of the Focusing Properties of Combined Reflector Antennas
158(5)
References
163(4)
7 Proof of Specific Radio Tomography Methods
167(36)
Vladimir Yakubov
Sergey Shipilov
Dmitry Sukhanov
Andrey Klokov
7.1 Ultra-Wide Band Incoherent Tomography
168(9)
7.1.1 Overview of Problem
168(1)
7.1.2 Spatial Testing with Non-Filled Aperture
169(3)
7.1.3 Time-Tact of Objects in the Frequency Domain
172(5)
7.2 UWB Tomography of Non-Linear Inclusions
177(8)
7.2.1 Current Statement of Problem
177(3)
7.2.2 UWB Tomography of Non-Linearities
180(2)
7.2.3 Signal Processing and Algorithm of UWB Images of Non-Linear Inclusions
182(3)
7.3 Doppler Tomography Experimental Proof
185(12)
7.3.1 Microwave Doppler Sensor and Location Sounding
185(4)
7.3.2 Reconstruction of Objects: Imitational Modeling
189(2)
7.3.3 Positioning System and Manual Doppler Scanning Device
191(4)
7.3.4 Doppler Sub-Surface Tomography
195(2)
References
197(6)
Section III: Radio Tomography Practical Applications
8 Ground-Penetrating and Geo-Radars
203(22)
Vladimir Yakubov
Sergey Shipilov
Andrey Klokov
Nathan Blaunstein
8.1 Non-Contacting Sounding of Mines
205(13)
8.1.1 Random and Incomplete Ground-Penetrating Radar Technology
206(4)
8.1.2 Physical and Numerical Aspects of Mine Detection
210(4)
8.1.3 Signal Processing: Pre-Processing and Post-Processing
214(4)
8.2 Mine Detection and Imaging Using Diffraction Tomography Technique
218(3)
References
221(4)
9 Sub-Surface Tomography Applications
225(40)
Vladimir Yakubov
Sergey Shipilov
Andrey Klokov
Nathan Blaunstein
9.1 Subsoil Structures Detection and Visualization
226(14)
9.1.1 Tunnels and Tubes (Pipelines) Detection and Identification
226(1)
9.1.2 Geolocation of Rough and Uneven Terrain Surfaces
226(7)
9.1.3 Subsoil Structures Detection and Reconstruction of Images
233(7)
9.2 Experimental Reconstruction of Foreign Structures Buried in Subsoil Medium
240(4)
9.3 Minerals Detection and Identification
244(3)
9.4 Geolocation of Special Sub-Surface Man-Made Structures and Objects
247(10)
9.5 Millimeter-Wave Sub-Surface Tomography Applications
257(6)
9.5.1 Theoretical Background of Radiometer Operation
258(2)
9.5.2 Typical Application of Millimeter-Wave Radiometers
260(3)
References
263(2)
10 UWB Tomography of Forested and Rural Environments
265(16)
Vladimir Yakubov
Sergey Shipilov
Andrey Klokov
10.1 Tomography of Forested Areas
265(4)
10.2 Tomography of Wooden Structures and Constructions
269(4)
10.3 Applications of Focusing Method in Rural Environments
273(5)
References
278(3)
11 Detection of Live People in Clutter Conditions
281(12)
Nathan Blaunstein
Felix Yanovsky
Vladimir Yakubov
Sergey Shipilov
11.1 Finding Living People Buried in Sub-Soil Media
281(6)
11.2 Detection and Identification of Living People behind Walls
287(2)
References
289(4)
Section IV: Non-Contacting Acoustic And Combined Radio-Acoustic Tomography
12 Applications of Radio-Acoustic Tomography
293(20)
Vladimir Yakubov
Sergey Shipilov
Dmitry Sukhanov
Andrey Klokov
12.1 Experimental Results
294(5)
12.2 Complexing of Radio and Ultrasound Tomography Techniques
299(4)
12.3 Visualization of Small Defects Hidden Inside Metallic Constructions Using Acoustic Tomography
303(6)
References
309(4)
Section V: Applications Of Low-Frequency Magnetic And Eddy Current Tomography
13 Applications of Low-Frequency Magnetic Tomography
313(10)
Vladimir Yakubov
Dmitry Sukhanov
13.1 Eddy Currents and Accompanied Magnetic Fields
313(1)
13.2 Reconstruction of Metallic Objects by Low-Frequency Magnetic Tomography
314(4)
13.3 Magnetic Tomography of Metallic Objects Hidden behind Metallic Screens
318(4)
References
322(1)
14 Eddy Current Tomography Applications
323(12)
Alexey Vertiy
Nathan Blaunstein
14.1 Experimental Setup
323(1)
14.2 Eddy Current Tomography for Reconstruction of Sub-Surface Defects
324(7)
References
331(4)
Section VI: Methods Of Visualization And Reconstruction Of Objects
15 Visualization and Reconstruction of Objects
335(12)
Vladimir Yakubov
Sergey Shipilov
Dmitry Sukhanov
Andrey Klokov
15.1 Visualization of 3-D Tomograms by Polyscreen Technique
335(1)
15.2 Visualization of 3-D Tomograms by Equipotential Surfaces
336(1)
15.3 Visualization of 3-D Tomograms by Orthogonal Slices
337(1)
15.4 Inverse Problems in Object Reconstruction
338(4)
15.4.1 Elimination of Image Spreading
338(2)
15.4.2 Inverse Problem for Signal Analysis
340(2)
15.5 Inverse Problem of Source Localization
342(1)
15.6 Inverse Problem of Micro-Strip Sensors Reconstruction
343(2)
References
345(2)
Symbols and Abbreviations 347(6)
Index 353
Nathan Blaunstein was born in Moldova, former USSR, in 1948. He received MS degrees in radio physics and electronics from Tomsk University, Tomsk, former Soviet Union, in 1972, and PhD and DS and professor degrees in radio physics and electronics from the Institute of Geomagnetism, Ionosphere, and Radiowave Propagation (IZMIR), Academy of Science USSR, Moscow, Russia, in 1985 and 1991, respectively. From 1979 to 1984, he was an engineer and a lecturer, and then, from 1984 to 1992, a senior scientist, an associate professor, and a professor at Moldavian University, Beltsy, Moldova. From 1993 he was a researcher of the Department of Electrical and Computer Engineering and a visiting professor in the Wireless Cellular Communication Program at the Ben-Gurion University of the Negev, Beer-Sheva, Israel. Since April 2001, he has been an associate professor, and in 2005, a full professor in the Department of Communication Systems Engineering. Dr. Blaunstein has published ten books, two special chapters in handbooks on applied engineering and applied electrodynamics, six manuals, and over 190 articles in radio and optical physics, communication, and geophysics. His research interests include problems of radio and optical wave propagation, diffraction, reflection, and scattering in various media (sub-soil medium, terrestrial environments, troposphere, and ionosphere) for purposes of optical communication and radio and optical location, aircraft, mobile-satellite, and terrestrial wireless communications and networking.