Muutke küpsiste eelistusi

E-raamat: Electromagnetic Pulse Simulations Using Finite-Difference Time-Domain Method

  • Formaat: PDF+DRM
  • Ilmumisaeg: 14-Apr-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119526100
  • Formaat - PDF+DRM
  • Hind: 149,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 14-Apr-2021
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781119526100

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Electromagnetic Pulse Simulations Using Finite-Difference Time-Domain Method Discover the utility of the FDTD approach to solving electromagnetic problems with this powerful new resource

Electromagnetic Pulse Simulations Using Finite-Difference Time-Domain Method delivers a comprehensive overview of the generation and propagation of ultra-wideband electromagnetic pulses. The book provides a broad cross-section of studies of electromagnetic waves and their propagation in free space, dielectric media, complex media, and within guiding structures, like waveguide lines, transmission lines, and antennae.

The distinguished author offers readers a fresh new approach for analyzing electromagnetic modes for pulsed electromagnetic systems designed to improve the readers understanding of the electromagnetic modes responsible for radiating far-fields. The book also provides a wide variety of computer programs, data analysis techniques, and visualization tools with state-of-the-art packages in MATLAB® and Octave.

Following an introduction and clarification of basic electromagnetics and the frequency and time domain approach, the book delivers explanations of different numerical methods frequently used in computational electromagnetics and the necessity for the time domain treatment. In addition to a discussion of the Finite-difference Time-domain (FDTD) approach, readers will also enjoy:





A thorough introduction to electromagnetic pulses (EMPs) and basic electromagnetics, including common applications of electromagnetics and EMP coupling and its effects An exploration of time and frequency domain analysis in electromagnetics, including Maxwells equations and their practical implications A discussion of electromagnetic waves and propagation, including waves in free space, dielectric mediums, complex mediums, and guiding structures A treatment of computational electromagnetics, including an explanation of why we need modeling and simulations

Perfect for undergraduate and graduate students taking courses in physics and electrical and electronic engineering, Electromagnetic Pulse Simulations Using Finite-Difference Time-Domain Method will also earn a place in the libraries of scientists and engineers working in electromagnetic research, RF and microwave design, and electromagnetic interference.
Acknowledgments xiii
Preface xv
1 Electromagnetic Pulse
1(12)
1.1 Sources of EMP
1(2)
1.2 EMP Coupling and its Effects
3(1)
1.3 EMP Simulators
3(2)
1.4 Review of Earlier Work
5(5)
1.5 Overview of this Book
10(2)
1.6 Summary
12(1)
2 Time And Frequency Domain Analysis
13(10)
2.1 Introduction
13(1)
2.2 Nuclear Electromagnetic Pulse
14(8)
2.2.1 Differences of Two Exponentials Times in a Unit Step Function
14(1)
2.2.1.1 Time-Domain
15(1)
2.2.1.2 Frequency-Domain
15(2)
2.2.2 Reciprocal of the Sum of Two Exponentials
17(1)
2.2.2.1 Time-Domain Characteristics
18(1)
2.2.2.2 Frequency-Domain
19(3)
2.3 Summary
22(1)
3 Simulations Using Fdtd Method
23(9)
3.1 Introduction
23(1)
3.2 Need for FDTD Analysis of an EMP Simulator
24(1)
3.2.1 Choice of Method for Self-consistent Analysis
25(1)
3.3 Maxwell's Equations and the Yee Algorithm
25(2)
3.4 FDTD Implementation
27(2)
3.5 Numerical Issues
29(2)
3.6 Summary
31(1)
4 Electromagnetic Pulse In Free Space And Material Media
32(31)
4.1 Introduction
32(1)
4.2 Input Waveform
32(4)
4.2.1 MATLAB® Script for Visualization: Listing #1
33(2)
4.2.2 Execution of MATLAB/OCTAVE Code
35(1)
4.3 One-dimension Approach
36(25)
4.3.1 Free Space
36(2)
4.3.1.1 MATLAB Code Listing #1: EM Wave Propagation in Free-space
38(3)
4.3.2 Data Recording and Visualization
41(1)
4.3.2.1 MATLAB Script for Visualization: Listing #2
41(2)
4.3.3 Dielectric Medium
43(1)
4.3.3.1 Lossless Dielectric Medium
44(1)
4.3.3.2 MATLAB Code Listing #2: EM Wave in Air and Lossless-dielectric Medium
45(4)
4.3.3.3 Lossy Dielectric Medium
49(2)
4.3.3.4 MATLAB Code Listing #3: EM Wave in Air and Lossy-dielectric Medium
51(4)
4.3.3.5 MATLAB Code Listing #4: Analytical Approach for Wave in Lossy Medium
55(1)
4.3.4 Perfect Electric Conductor (PEC)
56(1)
4.3.4.1 MATLAB Code Listing #5: EM Wave in Air-PEC Half-space
57(4)
4.4 Summary
61(2)
Exercises
61(2)
5 Simulation Of Capacitor Bank
63(20)
5.1 Introduction
63(1)
5.2 Details of Model
64(6)
5.2.1 Description of Geometry
64(1)
5.2.2 Method of Charging
65(1)
5.2.3 Method for Calculating FDTD Charge and Capacitance
66(2)
5.2.4 FDTD Model of Closing Switch
68(1)
5.2.5 Discharging a Charged Capacitor
69(1)
5.3 Results and Discussion
70(3)
5.3.1 Charge Deposition on Plates
70(1)
5.3.2 Stabilization of Charge Density Distribution
71(1)
5.3.3 Determination of Characteristic Discharge Time
72(1)
5.4 Cross-check of FDTD Results Using Method-of-Moments
73(5)
5.4.1 Check of Capacitance
74(1)
5.4.2 Edge Effects on Charge Density Distribution
75(1)
5.4.3 Check of Charge Density Distribution
76(2)
5.5 Effect of Boundary Condition
78(2)
5.6 Summary
80(3)
Exercises
81(2)
6 Bounded Wave Simulator For Electromagnetic Pulses
83(21)
6.1 Introduction
83(2)
6.1.1 Organization of This
Chapter
83(2)
6.2 Geometry and Computational Model
85(3)
6.2.1 Idealizations
85(1)
6.2.2 Geometry
86(1)
6.2.3 FDTD Model
87(1)
6.3 Validation of TEM Structure Geometry
88(3)
6.3.1 Analytical Check
88(1)
6.3.2 Numerical Check
88(3)
6.4 FDTD Model of Closing Switch
91(2)
6.5 Choice of Distance to Domain Boundary
93(1)
6.6 Electric Field within TEM Structure
93(3)
6.6.1 Effect of Switch Closure Time
94(1)
6.6.2 Pulse Fidelity
95(1)
6.7 Flow of Current through Simulator Plates
96(1)
6.8 Prepulse
96(3)
6.9 Effect of Test Object
99(2)
6.10 Validation Checks for FDTD Analysis
101(1)
6.11 Summary
102(2)
Exercises
103(1)
7 Electromagnetic Modes Inside Bounded Wave Simulators
104(34)
7.1 Introduction
104(1)
7.1.1 Choice of Method for Modal Analysis
104(1)
7.1.2 Organization of This
Chapter
105(1)
7.2 Details of Model
105(6)
7.2.1 FDTD Model
105(1)
7.2.2 Qualitative Discussion of Mode Structure
106(2)
7.2.3 Application of SVD for Modal Analysis
108(1)
7.2.4 Validation of SVD Results
109(1)
7.2.5 Sample Calculation
109(2)
7.3 Modal Analysis of Simulator Without Test Object
111(8)
7.4 Modal Analysis of Simulator With Test Object
119(12)
7.4.1 Qualitative Analysis
120(2)
7.4.2 Quantitative Analysis Using SVD of Ex Data
122(5)
7.4.3 Quantitative Analysis Using SVD of Ez Data
127(4)
7.5 Physical Interpretation for Electric Field Increase
131(4)
7.6 Summary
135(3)
Exercises
136(2)
8 Parametric Study Of Radiation Leakage From A Bounded-Wave Simulator
138(17)
8.1 Introduction
138(1)
8.2 Details of Computational Model
139(1)
8.3 Sensitivity to Length of Parallel-plate Extension
140(1)
8.4 Sensitivity to Angle Between Tapered Plates
141(2)
8.5 Effect of Type of Termination
143(4)
8.6 Sensitivity to Closure Time of Switch
147(3)
8.7 Effect of Test Object
150(1)
8.8 Physical Interpretation
150(3)
8.9 Summary
153(2)
Exercises
154(1)
9 Modal Perspective Of Radiation Leakage From A Bounded-Wave Simulator
155(13)
9.1 Introduction
155(1)
9.2 Calculation Procedure
156(1)
9.3 Effect of Angle of Inclination Between Tapered Plates
156(6)
9.3.1 Correlation Study
157(2)
9.3.2 Physical Interpretation
159(2)
9.3.3 Variation of Leakage with Plate Angle
161(1)
9.4 Effect of Pulse Compression
162(3)
9.4.1 Effect on Radiation Leakage
162(1)
9.4.2 Explanation in Terms of Mode Structure
163(2)
9.5 Summary
165(3)
Exercises
167(1)
10 Spatial Mode Filter For Reducing Radiation Leakage
168(10)
10.1 Introduction
168(1)
10.2 Suppression of Higher Order Modes
168(8)
10.2.1 Optimal Value of Longitudinal Resistance
170(3)
10.2.2 Optimal Length of Suppressor Inside Test Volume
173(1)
10.2.3 Mode Structure with Suppressor in Presence of Test Object
174(2)
10.3 Summary
176(2)
Exercises
177(1)
11 Emp Interaction With Biological Tissues
178(9)
11.1 Introduction
178(1)
11.2 Model Description
179(2)
11.3 Results and Discussion
181(5)
11.3.1 Pulse Evolution in the TEM Cell
181(1)
11.3.2 Interaction of EMP with Human Body
182(4)
11.4 Summary
186(1)
Exercises
186(1)
12 Fdtd Computer Program
187(139)
12.1 Introduction
187(1)
12.2 Computer Code Details
187(59)
12.3 Sample Output
246(79)
12.4 Summary
325(1)
References 326(5)
Index 331
Shahid Ahmed, PhD, is a Senior Application Engineer at ANSYS, Inc. He has taught undergrad and graduate-level courses in physics, electrical, and electronics engineering. His research included experiments as well as computational modeling and simulations. He has published forty scholarly papers on various aspects of electromagnetics in peer-reviewed journals and conferences.