Muutke küpsiste eelistusi

E-raamat: Energetic Materials and Munitions: Life Cycle Management, Environmental Impact, and Demilitarization

  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Feb-2019
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527816668
  • Formaat - EPUB+DRM
  • Hind: 122,20 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 20-Feb-2019
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527816668

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Provides a hands-on approach to demilitarization and environmental aspects of energetic materials and munitions

This book gives an overview of the environmental impact of the production, use, and cleanup of energetic materials and munitions. It provides scientists, engineers, environmental specialists, and users with the understanding of environmental issues for munitions and of the ways to improve design and manage potential risks. It covers the various aspects of how chemical properties influence fate, transport, and toxicity of new formulations and prescribes tools for reducing or alleviating environmental risks. In addition, it discusses pyrotechnics and the problem of dealing with munitions underwater.

Chapters in Energetic Materials and Munitions: Life Cycle Management, Environmental Impact and Demilitarization look at demilitarization in general, as well as in the future. Topics covered include logistics, costs, and management; life cycle analysis and management; and greener munitions. Another introduces readers to the "One Health" approach in the design of sustainable munition compounds. Following that, readers are taught about land assessment for munitions-related contamination in military live-fire training. The book also examines the development and integration of environmental, safety, and occupational health information.

-Brings together in one source expertise and in-depth information on the current and future state of how we handle the production, use, and demilitarization of explosives and weaponry
-A handy reference for experienced practitioners, as well as for training young professionals in the field
-Every chapter contains real-life examples and proposes future directions for the field

Energetic Materials and Munitions: Life Cycle Management, Environmental Impact and Demilitarization is an important book for explosives specialists, pyrotechnicians, materials scientists, military authorities, safety officers, health officers, and chemical engineers.
Preface xi
1 Introduction and Overview 1(12)
Adam S. Cumming
1.1 Introduction
1(1)
1.2 Legislative Impact
2(2)
1.3 NATO Studies
4(1)
1.4 New Ingredients and Compositions
5(1)
1.5 Toxicology
6(1)
1.6 Life-Cycle Analysis
7(1)
1.7 Managing Contamination and Clean-Up
7(1)
1.8 Disposal Now and in the Future
8(1)
1.9 Recycling
8(1)
1.10 Conclusions
9(1)
References
9(4)
2 General Introduction to Ammunition Demilitarization 13(34)
David Towndrow
2.1 Part One - Logistics, Costs, and Management
13(14)
2.1.1 Introduction
13(1)
2.1.2 Context of Demilitarization
14(3)
2.1.2.1 The Scale of the Issue
14(1)
2.1.2.2 Factors Influencing Demilitarization
15(2)
2.1.3 Demilitarization Process
17(3)
2.1.3.1 Basic Stages of Demilitarization
17(3)
2.1.3.2 Demilitarization Facilities
20(1)
2.1.4 Demilitarization Techniques
20(6)
2.1.4.1 Demilitarization Techniques and Processes
20(1)
2.1.4.2 Maturity and Use of Demilitarization Techniques
21(5)
2.1.5 Summary
26(1)
2.2 Part Two - Environmental Issues and Demilitarization
27(19)
2.2.1 Introduction
27(1)
2.2.2 Demilitarization Process
27(13)
2.2.2.1 Technical and Environmental Issues
27(2)
2.2.2.2 Open Burning (OB) and Open Detonation (OD)
29(3)
2.2.2.3 Open Burning
32(1)
2.2.2.4 Open Detonation
33(3)
2.2.2.5 Examples of Cost and CO2 in Demilitarization Options
36(4)
2.2.3 Design for Demilitarization (DFD)
40(12)
2.2.3.1 NATO AOP 4518 (Revised 2018)
40(4)
2.2.3.2 A Munition Manager's Perspective of Disposal Plans
44(1)
2.2.3.3 Future Trends
45(1)
References
46(1)
3 Assessment and Sustainment of the Environmental Health of Military Live-fire Training Ranges 47(28)
Sonia Thiboutot
Sylvie Brochu
3.1 Introduction
47(1)
3.2 Background and Context
48(3)
3.3 Munition-Related Contaminants
51(1)
3.4 Surface Soil Characterization in Live-fire Training Ranges
52(9)
3.4.1 Safety Aspects
53(1)
3.4.2 Data Quality and Sampling Objectives
53(3)
3.4.3 Importance of Soil Sample Processing to Ensure Representativeness
56(1)
3.4.4 How Clean is Clean?
57(1)
3.4.5 Risk to the Receptors Through the Transport of Munitions Constituents
58(3)
3.5 Methodology for the Precise Measurements of MC Sources
61(6)
3.5.1 Explosive Footprints in Impact Areas
61(3)
3.5.2 Firing Positions
64(3)
3.6 Tailored Management Practices: Mitigation and Remediation
67(2)
3.6.1 Mitigation Measures
67(15)
3.6.1.1 Analytical Tool and Adsorption Method for MCs in Aqueous Samples
67(1)
3.6.1.2 Thermal Treatment of Shoulder Rocket Propellant-Contaminated Surface and Subsurface Soils
68(1)
3.7 Emerging Constituents
69(1)
3.8 Conclusion
70(1)
References
71(4)
4 Greener Munitions 75(28)
Sylvie Brochu
Sonia Thiboutot
4.1 Background and Context
75(2)
4.2 Munitions Constituents of Concern
77(1)
4.3 Source of Munitions Constituents
78(1)
4.4 Greener Munitions Development Approach
79(3)
4.5 RIGHTTRAC
82(10)
4.5.1 Energetic Formulation Selection
83(3)
4.5.1.1 Main Explosive Charge
83(1)
4.5.1.2 Performance
83(1)
4.5.1.3 IM Properties
83(1)
4.5.1.4 Fate, Transport, and Toxicity
84(2)
4.5.2 Main Propellant Charge
86(3)
4.5.2.1 Performance
86(1)
4.5.2.2 Modular Charges
87(1)
4.5.2.3 IM Properties
87(1)
4.5.2.4 Fate, Transport, and Toxicity
88(1)
4.5.3 Field Demonstration
89(2)
4.5.3.1 Final Selection
89(1)
4.5.3.2 Gun Testing
89(1)
4.5.3.3 Detonation Residues
90(1)
4.5.4 Life-Cycle Analysis
91(1)
4.5.5 Summary
92(1)
4.6 New Enhanced and Green Plastic Explosive for Demolition and Ordnance Disposal
92(4)
4.6.1 PETN Option
93(2)
4.6.1.1 Performance
93(1)
4.6.1.2 Deposition Rate
94(1)
4.6.1.3 Fate, Transport, and Toxicity
94(1)
4.6.2 HMX Option
95(1)
4.6.3 Summary
96(1)
4.7 Conclusions
96(2)
References
98(5)
5 Pyrotechnics and The Environment 103(36)
Ranko Vrcelj
5.1 Introduction
103(2)
5.2 Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH)
105(2)
5.3 Qualification
107(1)
5.4 Civilian Studies
107(2)
5.5 Production
109(1)
5.6 Site Location
110(2)
5.7 Production
112(1)
5.8 Raw Materials Acquisition and Quality Control
112(2)
5.9 Specific Materials Production
114(1)
5.10 Heavy Metals
115(1)
5.11 Perchlorates and Chlorates
116(1)
5.12 Smokes
116(1)
5.13 Volatilization Smokes
116(1)
5.14 Magnesium Teflon Viton (MTV) Countermeasures
116(1)
5.15 Resins, Binders, and Solvents
117(1)
5.16 Storage
117(1)
5.17 Packaging Waste
118(1)
5.18 Usage and Disposal
118(1)
5.19 Heavy Metals
118(4)
5.20 Perchlorates and Chlorates
122(2)
5.21 Smokes
124(2)
5.21.1 Obscurant Smokes
124(1)
5.21.2 Volatilization Smokes
124(1)
5.21.3 MTV
125(1)
5.22 Disposal and Waste Burning
126(1)
5.23 The Future?
127(1)
5.24 Suitably Qualified and Experienced Person (SQEP) Issues
128(1)
5.25 Integration
129(4)
Acknowledgements
133(1)
References
133(6)
6 Munitions in the Sea 139(30)
Sandro Carniel
Jacek Beldowsky
Margo Edwards
6.1 Introduction
139(2)
6.2 The Controlling Factors
141(4)
6.2.1 Environmental Aspects
141(1)
6.2.2 Corrosion
142(2)
6.2.3 Fate and Transport of Constituents
144(1)
6.2.4 Sea-Disposal Process
145(1)
6.3 Tools for Assessment and Remediation
145(5)
6.3.1 Acoustic Sensors
145(1)
6.3.2 EM Sensors
146(1)
6.3.3 Optical Sensors
146(1)
6.3.4 Platforms
146(1)
6.3.5 Navigation and Positioning
147(2)
6.3.6 Remediation
149(1)
6.4 The Outstanding Problems
150(9)
6.4.1 Technical Aspects
150(2)
6.4.1.1 Location
150(1)
6.4.1.2 Detection
150(1)
6.4.1.3 Monitoring
151(1)
6.4.1.4 Handling
151(1)
6.4.2 Environmental Aspects
152(4)
6.4.2.1 Chemical Degradation of MEC
152(1)
6.4.2.2 Long- Term and Long-Distance Transport
153(1)
6.4.2.3 Ecotoxicological Aspects
154(2)
6.4.3 Geopolitical Aspects
156(3)
6.5 Moving Forward
159(3)
6.5.1 Global Collaboration
159(1)
6.5.2 Recent Global EU and NATO Efforts
160(1)
6.5.3 Advantages of Joint Efforts
161(1)
Glossary
162(1)
Acknowledgements
163(1)
References
163(6)
7 Environmental Assessment of Military Systems with the Life-Cycle Assessment Methodology 169(30)
Carlos Ferreira
Fausto Freire
Jose Ribeiro
7.1 Overview of the Life-Cycle Assessment Methodology
170(4)
7.1.1 Life-Cycle Thinking
170(1)
7.1.2 Life-Cycle Assessment
171(2)
7.1.3 Purpose of Life-Cycle Assessment Studies
173(1)
7.2 The Four Phases of the LCA Methodology Applied to a Case Study
174(20)
7.2.1 Goal and Scope
174(4)
7.2.1.1 Functional Unit
175(1)
7.2.1.2 System Boundaries
176(2)
7.2.2 Life-Cycle Inventory
178(4)
7.2.3 Life-Cycle Impact Assessment
182(18)
7.2.3.1 Life-Cycle Impact Assessment Methods
185(2)
7.2.3.2 Life-Cycle Impact Assessment Software
187(1)
7.2.3.3 Life-Cycle Impact Assessment of the Case Study
188(6)
7.3 Limitations of Life-Cycle Assessment
194(1)
7.4 Conclusions
194(1)
References
195(4)
8 Integrating the 'One Health' Approach in the Design of Sustainable Munition Systems 199(14)
Mark S. Johnson
8.1 General Background
199(1)
8.2 Munition Compounds and Aetiology of Environmental, Safety, and Occupational Health Issues: Lessons Learnt
199(1)
8.3 Core Operational ESOH Data: Needs and Requirements
200(7)
8.3.1 Life Cycle Environmental Assessment
200(1)
8.3.2 Bridging Communication Between Research and Acquisition
200(1)
8.3.3 ESOH Data Requirements
201(6)
8.3.3.1 Approaches
201(6)
8.4 Current and Evolving Regulatory Interests
207(1)
8.5 Case Studies and Cost Analysis
207(3)
8.5.1 M116, 117, 118 Simulators
207(1)
8.5.2 M-18 Violet Smoke
208(1)
8.5.3 Cost and Time Considerations
208(2)
8.6 Summary
210(1)
Acknowledgements
210(1)
References
210(3)
9 Overview of REACH Regulation and Its Implications for the Military Sector 213(14)
Carlos Ferreira
Fausto Freire
Jose Ribeiro
9.1 Introduction
213(1)
9.2 Regulation for Hazard Substances
214(11)
9.2.1 Overview of Previous Legislation Concerning Hazard Substances in the European Union
214(1)
9.2.2 Overview of REACH Regulation
215(2)
9.2.3 Discussion of REACH Regulation
217(8)
9.3 Conclusions
225(1)
References
225(2)
10 Development and Integration of Environmental, Safety, and Occupational Health Information 227(14)
Mark S. Johnson
10.1 Introduction
227(1)
10.2 Phased Approach to a Toxicology Data Requirement
228(1)
10.3 Research, Development, Testing, and Evaluation
228(7)
10.3.1 Conception
228(3)
10.3.2 Synthesis
231(1)
10.3.3 Testing/Demonstration
232(1)
10.3.4 Acquisition
233(1)
10.3.5 Engineering and Manufacturing
234(1)
10.3.6 Demilitarization
235(1)
10.4 Other Data Requirements
235(3)
10.4.1 Environmental
235(3)
10.4.1.1 Fate and Transport
235(2)
10.4.1.2 Ecotoxicity
237(1)
10.4.1.3 Field Monitoring
237(1)
10.4.1.4 Disposal
237(1)
10.4.1.5 Occupational - Industrial Hygiene
237(1)
10.4.2 Regulatory
238(1)
10.4.2.1 Toxic Substance Control Act
238(1)
10.4.2.2 REACH
238(1)
10.4.3 Integrating Weight-of-Evidence into Decision-Making
238(1)
10.5 Concluding Remarks
238(1)
Acknowledgements
239(1)
References
239(2)
11 Research Priorities and the Future 241(12)
Adam S. Cumming
11.1 Introduction
241(1)
11.2 Greener Munitions
242(1)
11.3 Studies and Their Effect
243(2)
11.4 The Problems and the Changing Requirements
245(2)
11.4.1 Land Management and History
246(1)
11.5 Security Issues and Their Impact on Requirement
247(1)
11.6 Future Options and Needs in a Changing Political Landscape
247(3)
11.7 Conclusions
250(1)
References
251(2)
Index 253
Adam Cumming, PhD, is Honorary Professor at the Edinburgh University School of Chemistry, UK, and a recognized world expert in the field of energetics. He has worked for the UK Ministry of Defence within their research organisations.

Mark Johnson, PhD, DABT, ATS serves as the Director of Toxicology, US Army Public Health Center at Aberdeen Proving Ground, MD, USA. He is the chair of the Tri-Service Toxicology Consortium, past president of the American Board of Toxicology and has authored more than 100 manuscripts, technical reports and book chapters on the toxicology and risk assessment of munition compounds.