Muutke küpsiste eelistusi

E-raamat: Extreme Statistics in Nanoscale Memory Design

Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Knowledge exists: you only have to ?nd it VLSI design has come to an important in ection point with the appearance of large manufacturing variations as semiconductor technology has moved to 45 nm feature sizes and below. If we ignore the random variations in the manufacturing process, simulation-based design essentially becomes useless, since its predictions will be far from the reality of manufactured ICs. On the other hand, using design margins based on some traditional notion of worst-case scenarios can force us to sacri ce too much in terms of power consumption or manufacturing cost, to the extent of making the design goals even infeasible. We absolutely need to explicitly account for the statistics of this random variability, to have design margins that are accurate so that we can ?nd the optimum balance between yield loss and design cost. This discontinuity in design processes has led many researchers to develop effective methods of statistical design, where the designer can simulate not just the behavior of the nominal design, but the expected statistics of the behavior in manufactured ICs. Memory circuits tend to be the hardest hit by the problem of these random variations because of their high replication count on any single chip, which demands a very high statistical quality from the product. Requirements of 56s (0.
1 Introduction
1(8)
Amith Singhee
2 Extreme Statistics in Memories
9(8)
Amith Singhee
3 Statistical Nano CMOS Variability and Its Impact on SRAM
17(34)
Asen Asenov
4 Importance Sampling-Based Estimation: Applications to Memory Design
51(46)
Rouwaida Kanj
Rajiv Joshi
5 Direct SRAM Operation Margin Computation with Random Skews of Devices Characteristics
97(40)
Robert C. Wong
6 Yield Estimation by Computing Probabilistic Hypervolumes
137(42)
Chenjie Gu
Jaijeet Roychowdhury
7 Most Probable Point-Based Methods
179(24)
Xiaoping Du
Wei Chen
Yu Wang
8 Extreme Value Theory: Application to Memory Statistics
203(38)
Robert C. Aitken
Amith Singhee
Rob A. Rutenbar
Index 241