Muutke küpsiste eelistusi

E-raamat: Factor Analysis and Dimension Reduction in R: A Social Scientist's Toolkit

(North Carolina State University, Raleigh, USA)
  • Formaat: 584 pages
  • Ilmumisaeg: 16-Dec-2022
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9781000810554
  • Formaat - PDF+DRM
  • Hind: 87,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 584 pages
  • Ilmumisaeg: 16-Dec-2022
  • Kirjastus: Routledge
  • Keel: eng
  • ISBN-13: 9781000810554

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Factor Analysis and Dimension Reduction in R provides coverage, with worked examples, of a large number of dimension reduction procedures along with model performance metrics to compare them. Factor analysis in the form of principal components analysis (PCA) or principal factor analysis (PFA) is familiar to most social scientists. However, what is less familiar is understanding that factor analysis is a subset of the more general statistical family of dimension reduction methods.

The social scientist's toolkit for factor analysis problems can be expanded to include the range of solutions this book presents. In addition to covering FA and PCA with orthogonal and oblique rotation, this books coverage includes higher-order factor models, bifactor models, models based on binary and ordinal data, models based on mixed data, generalized low-rank models, cluster analysis with GLRM, models involving supplemental variables or observations, Bayesian factor analysis, regularized factor analysis, testing for unidimensionality, and prediction with factor scores. The second half of the book deals with other procedures for dimension reduction. These include coverage of kernel PCA, factor analysis with multidimensional scaling, locally linear embedding models, Laplacian eigenmaps, diffusion maps, force directed methods, t-distributed stochastic neighbor embedding, independent component analysis (ICA), dimensionality reduction via regression (DRR), non-negative matrix factorization (NNMF), Isomap, Autoencoder, uniform manifold approximation and projection (UMAP) models, neural network models, and longitudinal factor analysis models. In addition, a special chapter covers metrics for comparing model performance.

Features of this book include:





Numerous worked examples with replicable R code Explicit comprehensive coverage of data assumptions Adaptation of factor methods to binary, ordinal, and categorical data Residual and outlier analysis Visualization of factor results Final chapters that treat integration of factor analysis with neural network and time series methods

Presented in color with R code and introduction to R and RStudio, this book will be suitable for graduate-level and optional module courses for social scientists, and on quantitative methods and multivariate statistics courses.
List of figures
xiii
Preface xvii
Acknowledgments xix
PART I Multivariate analysis of factors and components
1(354)
1 Factor analysis: Research questions it addresses
3(10)
Introduction
3(1)
Purposes of factor analysis
4(1)
Limitations of factor analysis
5(1)
Common research questions associated with factor analysis
6(7)
2 Assumptions and limitations of factor analysis
13(21)
Introduction
13(1)
Existence of underlying dimensions
13(3)
Proper specification/no selection bias
16(1)
Proper specification of the number of factors
16(1)
Data homogenous on factor structure
17(1)
Valid imputation of factor labels
17(1)
Data level
18(4)
Linearity
22(1)
Multivariate normality
22(1)
Skew and kurtosis
23(2)
Homoskedasticity
25(1)
No influential outliers
25(5)
No influential missing data
30(1)
Moderate to moderate-high intercorrelations without multicollinearity
31(1)
Absence of high multicollinearity
31(1)
No perfect multicollinearity
32(1)
Sphericity
32(1)
Adequate sample size
32(2)
3 Fundamental concepts in factor analysis
34(32)
Research modes: EFA vs. CFA
34(1)
Estimation methods
35(1)
Data extraction: PCA vs. PFA
35(3)
Other data extraction methods
38(2)
Number of dimensions to extract
40(8)
Item complexity and simple factor structure
48(2)
Rotation of axes
50(5)
Eigenvalues
55(1)
Eigenvectors and factor loadings
56(2)
Communality and uniqueness
58(3)
Factor and component scores
61(2)
Model fit
63(3)
4 Quick start: Principal factor analysis (PFA) in R
66(10)
Introduction
66(1)
Setup and example data
67(1)
Parallel analysis
68(2)
Orthogonal PFA with fa ()
70(2)
Factor scores in fa ()
72(1)
Beta weights in fa ()
73(3)
5 Quick start: Confirmatory factor analysis in R
76(24)
Overview
76(1)
Testing error in the CFA measurement model
77(1)
Other CFA tests
77(1)
Goodness-of-fit measures
78(3)
Modification indices and parameter change coefficients
81(2)
Path significance and critical ratios
83(1)
R packages for CFA and SEM
83(1)
Example data
84(1)
Creating the CFA model with lavaan
84(8)
Residual analysis
92(1)
Modification indices
93(1)
Goodness-of-fit measures
94(2)
Revised model
96(2)
Visualization
98(2)
6 Quick start: Principal component analysis (PCA) in R
100(34)
Introduction
100(1)
Setup and data for principal components analysis with PCA ()
100(2)
Testing factor adequacy with KMO ()
102(1)
Bartlett's test for sphericity
102(1)
Determining the number of factors to request
103(1)
Creating the model with PCA ()
103(1)
Eigenvalues and the scree plot
104(1)
Empirical scree tests
105(2)
Exploratory graph analysis of factor memberships
107(1)
PCA variable plot
108(2)
Eigenvectors
110(3)
Component loadings
113(1)
Component rotation
114(2)
Biplots and outliers
116(1)
Variable contributions
116(5)
Residual analysis
121(2)
Saving component scores
123(3)
Automatic PCA reporting with "FactoInvestigate"
126(1)
Principal Component Analysis
126(8)
7 Oblique and higher-order factor models
134(31)
Oblique PEA with fa ()
134(12)
Oblique PCA with principal ()
146(7)
Second-order oblique factor analysis
153(7)
Bifactor models
160(5)
8 Factor analysis for binary, ordinal, and mixed data
165(102)
Polychoric PCA and PEA
165(8)
Heterogeneous PCA with hector ()
173(9)
Mixed data PCA with PCAmix ()
182(26)
Mixed data PCA with FAMD ()
208(9)
Mixed data with generalized low-rank models (GLRM)
217(21)
Categorical PCA with princals ()
238(8)
PCA for binary variables with logisticPCA ()
246(21)
9 PFA in greater detail
267(30)
Introduction
267(1)
Extension variables with fa()
267(6)
Orthogonal PFA with fact anal ()
273(9)
Oblique factor analysis with fa. promax ()
282(4)
Bayesian factor analysis with BayesFM
286(6)
Regularized factor analysis with fareg ()
292(5)
10 PCA in greater detail
297(58)
Introduction
297(1)
PCA with prcomp ()
297(40)
PCA with principal()
337(14)
PCA for R with princomp ()
351(4)
PART II Additional tools for dimension reduction
355(190)
11 Sixteen additional methods for dimension reduction (dimRed)
357(42)
Dimension reduction in the dimRed () system
357(1)
Introduction
357(1)
Setup
357(1)
The embed () function in dimRed
358(1)
Dimension reduction methods in dimRed
359(40)
PCA and PCA_L1 methods
360(2)
Kernel PCA (kPCA)
362(3)
Classical multidimensional scaling
365(2)
Non-metric multidimensional scaling
367(2)
Locally linear embedding
369(3)
Hessian locally linear embedding
372(1)
Laplacian eigenmaps
373(3)
Diffusion maps
376(3)
Force directed methods
379(5)
t-Distributed stochastic neighbor embedding (tSNE)
384(1)
Independent component analysis (FastICA)
385(2)
Dimensionality reduction via regression (DRR)
387(4)
Non-negative matrix factorization (NNMF)
391(2)
Isomap
393(3)
Autoencoder
396(3)
12 Metrics for comparing and evaluating dimension reduction models
399(20)
Performance quality metrics for dimRed
399(7)
Multi-method multi-measure comparison
406(2)
The "coRanking" package
408(6)
Package dimRED multi-method multi-measure comparison with custom parameters
414(5)
13 Recipes: An alternative system for dimension reduction
419(47)
Introduction
419(1)
The recipes design framework
419(1)
Libraries and setup for this section
420(1)
The unvotes example data
421(1)
Data levels: a note of caution
422(1)
Illustration of use of the unvotes data
423(2)
PCA: standard deviations, variances, eigenvectors, eigenvalues, contributions, and loadings
425(10)
PCA with the recipes package
435(14)
ICA with the recipes package
449(5)
KPCA with the recipes package
454(12)
14 Factor analysis for neural models
466(13)
Introduction
466(1)
Example data and setup
466(1)
PCA in caret pre-processing
467(5)
Use of PCA in the pcaNNET modeling method
472(6)
Autoencoder with dimRed
478(1)
15 Factor analysis for time series data
479(66)
Introduction
479(1)
Setup
480(1)
Example data
481(1)
Visualizing longitudinal data with the "ggplot2" package
481(1)
Visualizing longitudinal data with the "brolgar" package
482(1)
Data preparation for FPCA for longitudinal data
483(3)
Number of components
486(1)
Component trends over time
487(1)
Diagnostic plots
487(2)
Outlier detection
489(2)
Scores
491(1)
Other R packages for functional PCA
492(1)
Appendix 1 Datasets used in this volume
493(4)
Appendix 2 Introduction to R and RStudio
497(43)
Why R?
497(1)
Installing R and RStudio
498(1)
Example data
498(2)
Quick start: computing a correlation
500(2)
Importing data
502(4)
Saving data
506(1)
Adding value labels to data
507(2)
Inspecting data
509(5)
R data structures
514(5)
Handling missing values
519(4)
Finding useful packages to install
523(2)
Installing packages
525(3)
Updating packages
528(1)
Using, saving, and loading packages and sessions
529(2)
Visualization and graphics in R
531(1)
Data management basics
532(2)
Dealing with error messages
534(2)
Obtaining data
536(1)
Getting help
537(2)
A note on using the attach () command
539(1)
Appendix 3 Frequently asked questions
540(5)
How to report factor analysis
540(1)
What are "data modes" in factor analysis?
540(1)
What is KMO? What is it used for?
541(1)
Is it necessary to standardize one's variables before applying factor analysis?
542(1)
Can you pool data from two samples together in factor analysis?
542(1)
How does factor comparison of the factor structure of two samples work?
542(3)
References 545(10)
Index 555