Muutke küpsiste eelistusi

E-raamat: Fundamentals of Industrial Electronics

Edited by (Auburn University, Alabama, USA), Edited by (Auburn University, Alabama, USA)
  • Formaat: 737 pages
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781351834339
  • Formaat - EPUB+DRM
  • Hind: 71,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 737 pages
  • Ilmumisaeg: 03-Oct-2018
  • Kirjastus: CRC Press Inc
  • ISBN-13: 9781351834339

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The Industrial Electronics Handbook, Second Edition combines traditional and newer, more specialized knowledge that will help industrial electronics engineers develop practical solutions for the design and implementation of high-power applications. Embracing the broad technological scope of the field, this collection explores fundamental areas, including analog and digital circuits, electronics, electromagnetic machines, signal processing, and industrial control and communications systems. It also facilitates the use of intelligent systemssuch as neural networks, fuzzy systems, and evolutionary methodsin terms of a hierarchical structure that makes factory control and supervision more efficient by addressing the needs of all production components.

Enhancing its value, this fully updated collection presents research and global trends as published in the IEEE Transactions on Industrial Electronics Journal, one of the largest and most respected publications in the field. Fundamentals of Industrial Electronics covers the essential areas that form the basis for the field. This volume presents the basic knowledge that can be applied to the other sections of the handbook.

Topics covered include:











Circuits and signals Devices Digital circuits Digital and analog signal processing Electromagnetics

Other volumes in the set:











Power Electronics and Motor Drives Control and Mechatronics Industrial Communication Systems Intelligent Systems
Preface xi
Acknowledgments xiii
Editorial Board xv
Editors xvii
Contributors xxi
PART I Circuits and Signals
1 DC and Transient Circuit Analysis
1(1)
Carlotta A. Berry
Deborah J. Walter
1.1 Introduction
1(6)
Ohm's Law
Inductors and Capacitors
Kirchhoff's Current Law
Kirchhoff's Voltage Law
Series and Parallel Relationships
Voltage and Current Divider Rule
Delta-Wye (Δ-Y) Transformations
1.2 Systematic Circuit Analysis Techniques
7(9)
Node-Voltage Method
Mesh-Current Method
Superposition
1.3 Circuit Modeling Techniques
16(3)
Source Transformations
Thevenin and Norton Equivalent Circuits
Maximum Power Transfer
1.4 Transient Analysis
19(17)
First-Order Circuits
Second-Order Circuits
1.5 Conclusions
36
Bibliography
36
2 AC Circuit Analysis
2(1)
Carlotta A. Berry
Deborah J. Walter
2.1 Introduction
2(1)
2.2 Circuit Elements
3(5)
Passive Circuit Elements
Mutual Inductance
Ideal Transformer
Autotransformer
2.3 Analysis Techniques
8(20)
Phasor Analysis
Frequency Response (Laplace) Analysis
Impulse Response Example
Step Response Example
Sinusoidal Steady-State Example
Complete Response Example
2.4 Complex Power
28(12)
Instantaneous, Average, and Reactive Power
Effective or RMS Value
Complex and Apparent Power
Maximum Average Power Transfer
Power Factor Correction
2.5 Conclusions
40(1)
Bibliography
40
3 Computational Methods in Node and Loop Analyses
3(1)
Stephen M. Haddock
J. David Irwin
3.1 Node Analysis
1(3)
3.2 Mesh Analysis
4(2)
3.3 An AC Analysis Example
6(2)
3.4 Computer Simulation of Networks
8(3)
3.5 MATLAB® m-File
11(1)
Defining Terms
12(1)
Bibliography
13
4 Transistor Operation and Modeling
4(1)
Tina Hudson
4.1 Introduction
1(1)
4.2 Transistor Operation and Characterization
1(4)
MOSFET Operation and Characterization
BJT Operation and Characterization
FETs versus BJTs
5 Application of Operational Amplifiers
5(1)
Carlotta A. Berry
Deborah J. Walter
5.1 Introduction
1(2)
Ideal Op Amp Assumptions
Linear Range of Operation
5.2 Node Voltage Analysis of Op Amp Circuits
3(9)
Inverting Amplifier
Non-Inverting Amplifier
Difference Amplifier
Weighted Difference Amplifier
Output Current
Saturation
Differentiator
Bandpass Filter
Phase-Shift Oscillator
5.3 Common Op Amp Circuits
12(1)
5.4 Circuit Design with Op Amps
12(15)
Practical Considerations
Practical Applications
Gain Bandwidth Limitation
Design Examples
5.5 Realistic Op Amp Model
27(2)
Inverting Amplifier
Non-Inverting Amplifier
Input Offset Voltage
Input Bias and Offset Currents
Frequency Response
Slew Rate
5.6 Conclusion
29(1)
Bibliography
30
6 Frequency Response and Bode Diagrams
6(1)
Thomas F. Schubert, Jr.
Ernest M. Kim
6.1 Introduction
1(1)
6.2 Theoretical Relationships
1(1)
6.3 Measurement of the Frequency Response
2(1)
6.4 Displaying the Frequency Response---The Bode Diagram
3(17)
Mathematical Derivations
Bode Plots of the Factors
Time Delay
Temporal Frequency versus Angular Frequency
References
20
7 Laplace Transforms
7(1)
Dalton S. Nelson
7.1 Introduction
1(2)
7.2 Properties of the Laplace Transform
3(3)
Linearity
s-Domain Shifting
Time-Domain Shifting
Periodic Functions
Initial and Final Value Theorems
Integrals (Integration)
Derivatives (Differentiation)
7.3 The Inverse Transform
6(1)
Partial Fractions
7.4 Miscellaneous Examples
7(5)
References
12
PART II Devices
8 Semiconductor Diode
8(1)
Bogdan M. Wilamowski
8.1 Nonlinear Static I-V Characteristics
1(5)
pn Junction Equation
Forward I-V Diode Characteristics
Reverse I-V Characteristics
8.2 Diode Capacitances
6(2)
Diffusion Capacitance
Depletion Capacitance
8.3 Diode as a Switch
8(1)
8.4 Temperature Properties
9(1)
8.5 Piecewise Linear Model
10(1)
8.6 Different Types of Diodes
11(4)
Switching Diodes
Zener Diodes
Tunnel Diodes (Esaki Diodes)
Backward Diodes
PIN Diodes
Schottky Diodes
Super Barrier Diodes
Step-Recovery Diodes
Avalanche Diodes
Varicaps
Solar Batteries
Photodiodes
LEDs
Laser Diodes
Gun Diodes
IMPATT Diodes
Peltier Diodes
References
15
9 Bipolar Junction Transistor
9(1)
Bogdan M. Wilamowski
Guofu Niu
9.1 Ebers-Moll Model
1(2)
9.2 Gummel-Poon Model
3(2)
9.3 Current Gains of Bipolar Transistors
5(2)
9.4 High Current Phenomena
7(1)
9.5 Small Signal Model
8(2)
9.6 Technologies
10(2)
Integrated NPN Bipolar Transistor
Lateral and Vertical PNP Transistors
9.7 Model Parameters
12(3)
Thermal Sensitivity
Second Order Effects
SPICE Model of the Bipolar Transistor
9.8 SiGe HBTs
15(5)
Operation Principle and Performance Advantages over Si BJT
Industry Practice and Fabrication Technology
References
20
10 Field Effect Transistors
10(1)
Bogdan M. Wilamowski
J. David Irwin
10.1 Introduction
1(1)
10.2 MOS Transistor
1(9)
MOS Structure and Threshold Voltage
MOS Transistor Current Characteristics
Second-Order Effects on a MOS Transistor
10.3 Junction Field Effect Transistor
10(3)
10.4 Static Induction Transistor
13(4)
Theory of SIT Operation for Small Currents
Theory of SIT for Large Currents
Bipolar Mode of Operation of the SIT
10.5 Lateral Punch-Through Transistor
17(2)
10.6 Power MOS Transistors
19(2)
References
21
11 Noise in Semiconductor Devices
11(1)
Alicja Konczakowska
Bogdan M. Wilamowski
11.1 Introduction
1(1)
11.2 Sources of Noise in Semiconductor Devices
1(5)
Thermal Noise
Shot Noise
Generation-Recombination Noise
1/f Noise
Noise 1/f2
Burst Noise/RTS Noise
Avalanche Noise
11.3 Noise of BJTs, JFETs, and MOSFETs
6(6)
Noise of BJTs
Noise of JFETs
Noise of MOSFETs
Low Noise Circuits for Low Frequency Range
References
12(1)
12 Physical Phenomena Used in Sensors
12(1)
Tiantian Xie
Bogdan M. Wilamowski
12.1 Introduction
1(1)
12.2 Piezoresistive Effect
1(4)
12.3 Thermoelectric Effect
5(1)
12.4 Piezoelectric Effect
5(1)
12.5 Pyroelectric Effect
6(2)
12.6 Photoelectric Effect in Semiconductors
8(1)
12.7 Photoelectric Effect in p-n Junctions
9(1)
12.8 Temperature Effect in p-n Junctions
9(2)
12.9 Hall Effect
11(1)
12.10 Conclusion
12(1)
References
12(1)
13 MEMS Devices
13(1)
Jose M. Quero
Antonio Luque
Luis Castaner
Angel Rodriguez
Adrian Ionescu
Montserrat Fernandez-Bolanos
Lorenzo Faraone
John M. Dell
13.1 Introduction
1(1)
13.2 Sensing and Measuring Principles
2(7)
Capacitive Sensing
Resistive Sensing
Piezoelectric Sensing
Thermal Transducers
Optical Sensors
Magnetic Sensors
13.3 MEMS Actuation Principles
9(3)
Introduction
Electrostatic Actuation
Thermal Actuation
Piezoelectric Actuation
Magnetic Actuation
13.4 MEMS Devices
12(18)
Inertial Sensors
Pressure Sensors
Radio Frequency MEMS: Capacitive Switches and Phase Shifters
Microfluidic Components
Optical Devices
References
30
14 MEMS Technologies
14(1)
Antonio Luque
Jose M. Quero
Carles Cane
14.1 Introduction
1(1)
14.2 Modeling and Scaling Laws
2(3)
Scale in Size
Mechanical Properties
Modeling
14.3 MEMS Materials
5(3)
Semiconductor Substrates: Silicon and Other Compound Materials
Silicon Oxide and Silicon Nitride
Insulating Substrates: Quartz, Glass, and Sapphire
Metals
Ceramics
Polymers
14.4 Deposition
8(4)
Material Deposition Techniques for MEMS
Classification of Deposition Techniques
Physical Deposition Techniques
Physical Vapor Deposition
Sputtering
Evaporation
Pulsed Laser Deposition
Spin Casting
Chemical Deposition and Growth Techniques
Thermal Oxidation
Chemical Vapor Deposition
Epitaxy
Electroplating
14.5 Etching
12(2)
Wet Etching
Dry Etching
14.6 Molding
14(1)
References
15(1)
15 Applications of MEMS
15(1)
Antonio Luque
Jose M. Quero
Robert Lempkowski
Francisco Ibanez
15.1 Introduction
1(1)
15.2 Industrial
1(1)
15.3 Automotive
2(2)
15.4 Biomedical
4(2)
15.5 Communications
6(4)
MEMS Replacement of Existing System Components
Antenna, Filters, and Matching Network Step-Tuning Examples in PWB MEMS
RF Switches
Meso-MEMS Phase Shifters
Switched Line Phase Shifters
Reflective Hybrid Coupler with Shunt Switches
Lower Loss Cantilever and Fine Grain Variable MEMS Phase Shifters
15.6 Aerospace
10(4)
Aeroplane Applications
Space Applications
Coarse and Fine Sun Sensors
Shutter for Reflective Control
Microthrusters
15.7 Power and Energy
14(2)
Photovoltaic
Vibration
Thermal
Electromagnetic
Fuel Cells
Microbatteries
15.8 Market Trends
16(3)
Current Status
MEMS Market Forecast
Future Trends
References
19
16 Transistors in Switching Circuits
16(1)
Tina Hudson
16.1 Large-Signal Models: Use of a Transistor as a Switch
1(1)
16.2 BJTs as Switches
1(7)
Basic Switch Using an npn
Switch Circuit with a Resistive Load
Switch Driving an LED
Basic Switch Using a pnp
16.3 MOSFETs as Switches
8(5)
Basic Switch Circuit Using an nFET
Switch Circuit with a Resistive Load
Switch Circuits Driving an LED
Basic Switch Circuit Using a pFET
16.4 CMOS Switches
13(4)
CMOS Digital Switches
CMOS Pass-Gates
References
17(1)
17 Transistors in Amplifier Circuits
17(1)
Tina Hudson
17.1 Using Linear Transistor Models for Amplifiers
1(1)
17.2 DC Analysis
2(12)
High-Gain Amplifier with Input Resistor Biasing
Common-Emitter Amplifier with Emitter Resistor and Load Resistor
High-Gain Amplifier with Current Source Biasing and Capacitively Coupled Load
Alternative High-Gain Amplifier
Voltage Follower
17.3 AC Analysis
14(24)
Small-Signal Model
High-Gain Amplifier with Input Resistor Biasing
Common-Emitter Amplifier with Emitter Resistor and Load Resistor
High-Gain Amplifier with Current Source Biasing and Capacitively Coupled Load
Alternative High-Gain Amplifier
Voltage Follower
17.4 Swing: Putting AC and DC Together
38(9)
High-Gain Amplifier with Input Resistor Biasing
High-Gain Amplifier with Input Resistor Biasing and a Resistive Load
High-Gain Amplifier with Current Source Biasing and Capacitively Coupled Resistive Load
Swing Nonlinearity
17.5 Design Example
47
High-Gain Amplifier with Input Resistor Biasing
High-Gain Amplifier with Current Mirror Biasing and Voltage Follower
18 A Simplistic Approach to the Analysis of Transistor Amplifiers
18(1)
Bogdan M. Wilamowski
J. David Irwin
18.1 Introduction
1(2)
MOS Transistors
Bipolar Junction Transistors
18.2 Calculating Biasing Currents
3(3)
18.3 Small-Signal Analysis
6(7)
Common-Source and Common-Emitter Configurations
Common-Drain and Common-Collector Configurations
Common-Gate and Common-Base Configurations
18.4 Circuits with PNP and PMOS Transistors
13(2)
18.5 Analysis of Circuits with Multiple Transistors
15(5)
References
20
19 Analog and Digital VLSI Design
19(1)
Vishal Saxena
R. Jacob Baker
19.1 Introduction
1(1)
19.2 CMOS Devices and Layout
1(2)
19.3 Electrical Behavior for Digital Design
3(1)
19.4 Electrical Behavior for Analog Design
4(1)
19.5 Digital VLSI Design
5(3)
Logic Gate Design
19.6 Complex Logic Gate Design
8(1)
19.7 Latches and Flip-Flops
8(1)
19.8 Analog VLSI Design
9(1)
19.9 Biasing for Analog Design
10(1)
19.10 Differential Amplifier
11(1)
19.11 Op-Amp
12(2)
19.12 Comparator
14(1)
19.13 Data Converters
15(3)
19.14 Conclusion
18(1)
References
18(2)
PART III Digital Circuits
20 Digital Design---Combinational Logic
20(1)
Buren Earl Wells
Sin Ming Loo
20.1 Introduction
1(1)
20.2 Number Representation
1(1)
20.3 Two-Valued Boolean Logic
2(2)
20.4 Logic Minimization
4(2)
20.5 Common Combinational Elements
6(2)
20.6 Modern Combinational Design Practices
8(13)
References
21 Digital Design---Sequential Logic
21(1)
Sin Ming Loo
Arlen Planting
Combinational and Sequential Logic
Memory Elements
Designing an Up Counter
Designing a Sequence Detector
Summary
References
22 Soft-Core Processors
22(1)
Arlen Planting
Sin Ming Loo
22.1 Introduction
1(2)
22.2 Processor Core Options
3(1)
22.3 Processor Definition Process
3(1)
22.4 Software Development Aspects
3(1)
22.5 Utilization of Soft-Core Processors
4(1)
22.6 Custom Instructions
5(1)
22.7 Soft-Core Processor on an ASIC vs. FPGA
5(1)
22.8 Design Issues
5(1)
22.9 Applications for Soft-Core Processors
6(1)
References
6(17)
23 Computer Architecture
23(1)
Victor P. Nelson
23.1 Hardware Organization
1(3)
23.2 Computer Software
4(2)
Programming Languages
Operating Systems
23.3 Information Representation in Digital Computers
6(4)
23.4 Computer Programming Model
10(15)
CPU Registers
Immediate Operands
Memory Organization
Memory Addressing
Computer Instruction Types
Interrupts and Exceptions
23.5 Evaluating Instruction Set Architectures
25(1)
23.6 Computer System Design
26(3)
23.7 Hierarchical Memory Systems
29(7)
Memory Characteristics
Semiconductor Memory
Technologies
Memory System Organization
Cache Memory
Virtual Memory Management
23.8 Interfaces to Input/Output Devices
36(1)
23.9 Microcontroller Architectures
37(2)
23.10 Multiple Processor Architectures
39(4)
References
43
24 FPGAs and Reconfigurable Systems
24(1)
Juan J. Rodriguez-Andina
Eduardo de la Torre
24.1 Introduction
1(3)
24.2 Advanced Hardware Resources in FPGAs
4(1)
Integrated Functional Blocks
I/O Signal Conditioning
Special Devices
24.3 IP Cores
5(1)
24.4 Software Tools for FPGAs
5(2)
SoC Design Tools
DSP Design Tools
Software and Hardware Debugging Tools
Power Management Tools
Signal Integrity and Mixed-Signal Design Tools
24.5 Role of FPGAs in Reconfigurable Systems
7(6)
FPGAs as Reconfigurable Elements
24.6 Applications
13(3)
Configurable Computing
Rapid System Prototyping
Communication Processors and Interfaces
Digital Signal Processing and Digital Control
IP Protection
Fault Tolerance
24.7 Conclusions
16(1)
References
17(8)
PART IV Digital and Analog Signal Processing
25 Signal Processing
25(1)
James A. Heinen
Russell J. Niederjohn
25.1 Introduction
2(1)
25.2 Continuous-Time Signals
2(2)
Common Signals
Periodic Signals
25.3 Time-Domain Analysis of Continuous-Time Signals
4(1)
Basic Operations on Signals
Convolution
25.4 Frequency-Domain Analysis of Continuous-Time Signals
5(7)
Fourier Series
Fourier Transforms
Laplace Transforms
25.5 Continuous-Time Signal Processors
12(1)
25.6 Time-Domain Analysis of Continuous-Time Signal Processors
13(1)
25.7 Frequency-Domain Analysis of Continuous-Time Signal Processors
14(1)
25.8 Continuous-Time (Analog) Filters
15(3)
Common Filter Types
Filter Design
25.9 Sampling
18(1)
25.10 Discrete-Time Signals
19(2)
Common Signals
Periodic Signals
Finite-Duration Signals
25.11 Time-Domain Analysis of Discrete-Time Signals
21(1)
Basic Operations on Signals
Convolution
Periodic Convolution
25.12 Frequency-Domain Analysis of Discrete-Time Signals
22(9)
Discrete Fourier Series
Discrete Fourier Transforms
Fast Fourier Transforms
Discrete-Time Fourier Transforms
z-Transforms
25.13 Discrete-Time Signal Processors
31(1)
25.14 Time-Domain Analysis of Discrete-Time Signal Processors
31(1)
25.15 Frequency-Domain Analysis of Discrete-Time Signal Processors
32(2)
25.16 Discrete-Time (Digital) Filters
34(4)
Common Filter Types
FIR Filter Design
IIR Filter Design
25.17 Discrete-Time Analysis of Continuous-Time Signals
38(1)
25.18 Discrete-Time Processing of Continuous-Time Signals
39(1)
References
40
26 Analog Filter Synthesis
26(1)
Nam Pham
Bogdan M. Wilamowski
26.1 Introduction
1(1)
26.2 Methods to Synthesize Low-Pass Filter
1(9)
Butterworth Low-Pass Filter
Chebyshev Low-Pass Filter
Inverse Chebyshev Low-Pass Filter
Cauer Elliptic Low-Pass Filter
26.3 Frequency Transformations
10(3)
Frequency Transformations Low-Pass to High-Pass
Frequency Transformations Low-Pass to Band-Pass
Frequency Transformations Low-Pass to Band-Stop
Frequency Transformation Low-Pass to Multiple Band-Pass
26.4 Summary and Conclusion
13(1)
References
14(13)
27 Active Filter Implementation
27(1)
Nam Pham
Bogdan M. Wilamowski
John W. Steadman
27.1 Introduction
1(1)
27.2 Circuit Realization
2(2)
First-Order Low-Pass
First-Order High-Pass
Two Popular Second-Order Low-Pass Circuits
Second-Order High-Pass Filter
27.3 Circuits with Placement of Poles and Zeros
4(4)
High-Pass Filter
High-Pass Filter
Low-Pass Filter
High-Pass Filter
Band-Pass Filter
Band-Pass Filter
Band-Stop Filter
Band-Stop Filter
27.4 Design Example
8(7)
27.5 Summary and Conclusion
15(1)
References
15(13)
28 Designing Passive Filters with Lossy Elements
28(1)
Marcin Jagiela
Bogdan M. Wilamowski
28.1 Introduction
1(1)
28.2 Background
1(3)
28.3 Method
4(2)
28.4 Solving the System of Equations
6(1)
28.5 Limitations for Losses
7(1)
28.6 Conclusion
8(1)
References
8(21)
PART V Electromagnetics
29 Electromagnetic Fields
29(1)
Sadasiva M. Rao
Tyler N. Killian
Michael E. Baginski
29.1 Introduction
1(1)
29.2 Charge, Current, and Continuity Equation
1(3)
Electric Charge
Electric Current
Continuity Equation
29.3 Electrostatic and Magnetostatic Fields
4(9)
Coulomb's Law and Electric Field
Biot-Savart Law and Magnetic Flux Density
Illustrative Examples
29.4 Potential Theory
13(5)
Concept of Potential Energy
Electric Potential
Relationship between E and V
Potential Function for a Given Charge Distribution
Vector Potential
Illustrative Examples
29.5 Gauss' Law and Ampere's Law
18(9)
Gauss' Law
Ampere's Circutal Law
Applications
29.6 Material Interaction
27(2)
Polarization
Magnetization
Boundary Conditions
29.7 Faraday's Law, Displacement Current, and Maxwell's Equations
29(1)
Faraday's Law
Displacement Current
Maxwell's Equations
29.8 Summary
30(1)
30 Propagating Electromagnetic Fields
30(1)
Michael E. Baginski
Sadasiva M. Rao
Tyler N. Killian
30.1 Maxwell's Equations in the Time Domain and Phasor Domain
1(8)
Maxwell's Equations in Complex (Phasor) Domain
Maxwell's Equations in Complex (Phasor) Domain
Uniform Plane
Waves
Propagation in a Lossless Media
Propagation in a Low-Loss Dielectric
Propagation in a Good Conductor
Reflection and Transmission of Plane Waves
30.2 Transmission Lines
9(9)
Overview
Analysis
Lossless Transmission Lines
Terminated Transmission Lines
Smith Chart
Impedance Matching
30.3 Waveguides
18(9)
Hollow Conducting Cylinders
Transverse Electric TEm, n Waves
Transverse Electric TMm, n Waves
Dielectric Waveguides
Fiber Optics
30.4 Antennas
27(4)
Differential or Hertzian Dipole
Dipole of Length L
Half-Wave Dipole
Antenna Characteristics
30.5 Summary
31(1)
31 Transmission Line Time-Domain Analysis and Signal Integrity
31
Edward Wheeler
Jianjian Song
David R. Voltmer
31.1 Introduction
1(1)
31.2 EM Fundamentals
2(1)
31.3 Transmission-Line Modeling
3(4)
31.4 Reflection and Transmission at Boundaries
7(1)
31.5 Transient Analysis
8(4)
31.6 Multiple Transmission Line Sections
12(1)
31.7 Transmission Line Junctions
13(1)
31.8 Reactive Loads
14(5)
31.9 Nonlinear Loads
19(4)
31.10 Conclusion
23(1)
References
23
Index 1
Bogdan M. Wilamowski, J. David Irwin