Muutke küpsiste eelistusi

E-raamat: Fundamentals of Optical Fiber Sensors

, Series edited by (Texas A&M University), , ,
  • Formaat - EPUB+DRM
  • Hind: 130,85 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"This book describes the latest development in optical fiber devices, and their applications to sensor technology"--

Fang, Ronghui Qu, Haiwen Cai (all optics and fine mechanics, Chinese Academy of Sciences, Shanghai), and Ken K. Chin (physics, New Jersey Institute of Technology) compile scattered information on optical fiber sensors into a textbook for graduate and senior undergraduate students and a reference for scientists and engineers in the field. They explain the physical principles behind optical fiber sensors, and describe practical applications. The topics are fundamentals of optical fibers, fiber sensitivities and devices, fiber gratings and related devices, distributed optical fiber sensors, fiber sensors with special applications, and the extrinsic fiber Fabry-Perot interferometer sensor. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com)

This book describes the latest development in optical fiber devices, and their applications to sensor technology. Optical fiber sensors, an important application of the optical fiber, have experienced fast development, and attracted wide attentions in basic science as well as in practical applications. Sensing is often likened to human sense organs. Optical fiber can not only transport information acquired by sensors at high speed and large volume, but also can play the roles of sensing element itself. Compared with electric and other types of sensors, fiber sensor technology has unique merits. It has advantages over conventional bulky optic sensors, such as combination of sensing and signal transportation, smaller size, and possibility of building distributed systems. Fiber sensor technology has been used in various areas of industry, transportation, communication, security and defense, as well as daily life. Its importance has been growing with the advancement of the technology and the expansion of the scope of its application, a growth this book fully describes.

Arvustused

The book provides a well-organized and in-depth treatment of optical fiber sensors for students and can also serve as a convenient reference for engineers and scientists working in the field.  (IEEE Electrical Insulation Magazine, 1 March 2014)

 

Preface xi
1 Introduction
1(9)
1.1 Historical Review and Perspective
1(2)
1.2 Classifications of Optical Fiber Sensors
3(3)
1.3 Overview of the
Chapters
6(4)
References
8(2)
2 Fundamentals Of Optical Fibers
10(66)
2.1 Introduction to Optical Fibers
10(8)
2.1.1 Basic Structure and Fabrication of Optical Fiber
10(2)
2.1.2 Basic Characteristics
12(5)
2.1.3 Classifications of Optical Fibers
17(1)
2.2 Electromagnetic Theory of Step-Index Optical Fibers
18(24)
2.2.1 Maxwell Equations in Cylindrical Coordinates
19(4)
2.2.2 Boundary Conditions and Eigenvalue Equations
23(3)
2.2.3 Weakly Guiding Approximation, Hybrid Modes, and Linear Polarized Modes
26(3)
2.2.4 Field Distribution and Polarization Characteristics
29(6)
2.2.5 Multimode Fiber and Cladding Modes
35(4)
2.2.6 Propagation of Optical Pulses in Optical Fibers
39(3)
2.3 Basic Theory of the Gradient-Index Optical Fiber
42(15)
2.3.1 Ray Equation in Inhomogeneous Media
42(4)
2.3.2 Ray Optics of GRIN Fiber
46(5)
2.3.3 Wave Optics of GRIN Fiber
51(5)
2.3.4 Basic Characteristics of Gradient Index Lens
56(1)
2.4 Special Optical Fibers
57(19)
2.4.1 Rare-Earth-Doped Fibers and Double-Cladding Fibers
57(3)
2.4.2 Polarization Maintaining Fibers
60(4)
2.4.3 Photonic Crystal Fiber and Microstructure Fiber
64(5)
Problems
69(2)
References
71(5)
3 Fiber Sensitivities And Fiber Devices
76(107)
3.1 Fiber Sensitivities to Physical Conditions
76(21)
3.1.1 Sensitivity to Axial Strain
77(1)
3.1.2 Sensitivity to Lateral Pressure
78(5)
3.1.3 Bending-Induced Birefringence
83(4)
3.1.4 Torsion-Induced Polarization Mode Cross-Coupling
87(4)
3.1.5 Bending Loss
91(4)
3.1.6 Vibration and Mechanical Waves in Fiber
95(1)
3.1.7 Sensitivity to Temperature
96(1)
3.2 Fiber Couplers
97(21)
3.2.1 Structures and Fabrications of 2 × 2 Couplers
98(1)
3.2.2 Basic Characteristics and Theoretical Analyses of the Coupler
99(11)
3.2.3 N × N and 1 × N Fiber Star Couplers
110(4)
3.2.4 Coupling in Axial Direction and Tapered Fiber
114(4)
3.3 Fiber Loop Devices Incorporated with Couplers
118(24)
3.3.1 Fiber Sagnac Loops
118(8)
3.3.2 Fiber Rings
126(5)
3.3.3 Fiber Mach-Zehnder Interferometers and Michelson Interferometers
131(4)
3.3.4 Fiber Loops Incorporated with 3 × 3 Couplers
135(7)
3.4 Polarization Characteristics of Fibers
142(20)
3.4.1 Polarization State Evolution in Fibers
142(12)
3.4.2 Basic Characteristics of Polarization Mode Dispersion
154(3)
3.4.3 Spun Fiber and Circular Birefringence Fiber
157(2)
3.4.4 Faraday Rotation and Optical Activity
159(3)
3.5 Fiber Polarization Devices
162(21)
3.5.1 Fiber Polarizers
162(3)
3.5.2 Fiber Polarization Controller
165(1)
3.5.3 Fiber Depolarizer and Polarization Scrambler
166(4)
3.5.4 Fiber Optical Isolator and Circulator
170(2)
Problems
172(2)
References
174(9)
4 Fiber Gratings And Related Devices
183(95)
4.1 Introduction to Fiber Gratings
183(11)
4.1.1 Basic Structure and Principle
183(3)
4.1.2 Photosensitivity of Optical Fiber
186(4)
4.1.3 Fabrication and Classifications of Fiber Gratings
190(4)
4.2 Theory of Fiber Grating
194(28)
4.2.1 Theory of Uniform FBG
194(8)
4.2.2 Theory of Long-Period Fiber Grating
202(6)
4.2.3 Basic Theory of Nonuniform Fiber Gratings
208(6)
4.2.4 Inverse Engineering Design
214(5)
4.2.5 Apodization of Fiber Grating
219(3)
4.3 Special Fiber Grating Devices
222(27)
4.3.1 Multisection FBGs
222(11)
4.3.2 Chirped Fiber Bragg Grating
233(3)
4.3.3 Tilted Fiber Bragg Gratings
236(7)
4.3.4 Polarization Maintaining Fiber Gratings
243(3)
4.3.5 In-Fiber Interferometers and Acoustic Optic Tunable Filter
246(3)
4.4 Fiber Grating Sensitivities and Fiber Grating Sensors
249(29)
4.4.1 Sensitivities of Fiber Gratings
250(2)
4.4.2 Tunability of Fiber Gratings
252(3)
4.4.3 Packaging of Fiber Grating Devices
255(4)
4.4.4 Fiber Grating Sensor Systems and Their Applications
259(4)
Problems
263(3)
References
266(12)
5 Distributed Optical Fiber Sensors
278(73)
5.1 Optical Scattering in Fiber
278(8)
5.1.1 Elastic Optical Scattering
279(2)
5.1.2 Inelastic Optical Scattering
281(4)
5.1.3 Stimulated Raman Scattering and Stimulated Brillouin Scattering
285(1)
5.2 Distributed Sensors Based on Rayleigh Scattering
286(14)
5.2.1 Optical Time Domain Reflectometer
286(6)
5.2.2 Polarization OTDR
292(2)
5.2.3 Coherent OTDR and Phase Sensitive OTDR
294(4)
5.2.4 Optical Frequency Domain Reflectometry
298(2)
5.3 Distributed Sensors Based on Raman Scattering
300(8)
5.3.1 Raman Scattering in Fiber
301(3)
5.3.2 Distributed Anti-Stokes Raman Thermometry
304(3)
5.3.3 Frequency Domain DART
307(1)
5.4 Distributed Sensors Based on Brillouin Scattering
308(14)
5.4.1 Brillouin Scattering in Fiber
308(4)
5.4.2 Brillouin Optical Time Domain Reflectrometer
312(4)
5.4.3 Brillouin Optical Time Domain Analyzer
316(6)
5.5 Distributed Sensors Based on Fiber Interferometers
322(29)
5.5.1 Configuration and Characteristics of Interferometric Fiber Sensors
323(4)
5.5.2 Low Coherence Technology in a Distributed Sensor System
327(4)
5.5.3 Sensors Based on Speckle Effect and Mode Coupling in Multimode Fiber
331(4)
Problems
335(2)
References
337(14)
6 Fiber Sensors With Special Applications
351(44)
6.1 Fiber Optic Gyroscope
351(13)
6.1.1 Interferometric FOG
352(10)
6.1.2 Brillouin Laser Gyro and Resonance Fiber Optic Gyroscope
362(2)
6.2 Fiber Optic Hydrophone
364(9)
6.2.1 Basic Structures
365(5)
6.2.2 Sensor Arrays and Multiplexing
370(2)
6.2.3 Low Noise Laser Source
372(1)
6.3 Fiber Faraday Sensor
373(6)
6.3.1 Faraday Effect in Fiber
374(2)
6.3.2 Electric Current Sensor Based on Faraday Rotation
376(3)
6.4 Fiber Sensors Based on Surface Plasmon Effect
379(16)
6.4.1 Surface Plasmon Effect
379(4)
6.4.2 Sensors Based on SPW
383(3)
Problems
386(1)
References
387(8)
7 Extrinsic Fiber Fabry-Perot Interferometer Sensor
395(32)
7.1 Basic Principles and Structures of Extrinsic Fiber F-P Sensors
395(6)
7.1.1 Structures of EFFP Devices
396(2)
7.1.2 Basic Characteristics of a Fabry-Perot Interferometer
398(3)
7.2 Theory of a Gaussian Beam Fabry-Perot Interferometer
401(5)
7.2.1 Basic Model and Theoretical Analysis
401(3)
7.2.2 Approximation as a Fizeau Interferometer
404(2)
7.3 Basic Characteristics and Performances of EFFPI Sensors
406(11)
7.3.1 Sensitivity of an EFFPI Sensor
406(2)
7.3.2 Linear Range and Dynamic Range of Measurement
408(2)
7.3.3 Interrogation and Stability
410(3)
7.3.4 Frequency Response
413(4)
7.4 Applications of the EFFPI Sensor and Related Techniques
417(10)
7.4.1 Localization of the Sound Source
417(1)
7.4.2 Applications in an Atomic Force Microscope
418(1)
7.4.3 More Application Examples
419(2)
Problems
421(1)
References
422(5)
APPENDICES
427(32)
Appendix 1 Mathematical Formulas
427(8)
A1.1 Bessel Equations and Bessel Functions
427(5)
A1.2 Runge-Kutta Method
432(1)
A1.3 The First-Order Linear Differential Equation
433(1)
A1.4 Riccati Equation
433(1)
A1.5 Airy Equation and Airy Functions
434(1)
Appendix 2 Fundamentals of Elasticity
435(11)
A2.1 Strain, Stress, and Hooke's Law
435(3)
A2.2 Conversions Between Coordinates
438(2)
A2.3 Plane Deformation
440(3)
A2.4 Equilibrium of Plates and Rods
443(3)
A2.5 Photoelastic Effect
446(1)
Appendix 3 Fundamentals of Polarization Optics
446(8)
A3.1 Polarized Light and Jones Vector
446(1)
A3.2 Stokes Vector and Poincare Sphere
447(2)
A3.3 Optics of Anisotropic Media
449(1)
A3.4 Jones Matrix and Mueller Matrix
450(3)
A3.5 Measurement of Jones Vector and Stokes Vector
453(1)
Appendix 4 Specifications of Related Materials and Devices
454(5)
A4.1 Fiber Connectors
456(3)
Index 459
ZUJIE FANG is a Professor at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences.

KEN K. CHIN is a Professor of Physics at the New Jersey Institute of Technology. His research interests include infrared imaging sensing and device physics.

RONGHUI QU is a Professor at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences.

HAIWEN CAI is a Professor at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences.