Muutke küpsiste eelistusi

E-raamat: Graph-Based Representations in Pattern Recognition: 13th IAPR-TC-15 International Workshop, GbRPR 2023, Vietri sul Mare, Italy, September 6-8, 2023, Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 13th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition, GbRPR 2023, which took place in Vietri sul Mare, Italy, in September 2023.

The 16 full papers included in this book were carefully reviewed and selected from 18 submissions. They were organized in topical sections on graph kernels and graph algorithms; graph neural networks; and graph-based representations and applications.
Graph Kernels and Graph Algorithms.- Quadratic Kernel Learning for
Interpolation Kernel Machine Based Graph Classification.- Minimum Spanning
Set Selection in Graph Kernels.- Graph-based vs. Vector-based Classification:
A Fair Comparison.- A Practical Algorithm for Max-Norm Optimal Binary
Labeling of Graphs.- Efficient Entropy-based Graph Kernel.- Graph Neural
Networks.- GNN-DES: A new end-to-end dynamic ensemble selection method based
on multi-label graph neural network.- C2N-ABDP: Cluster-to-Node
Attention-based Differentiable Pooling.- Splitting Structural and Semantic
Knowledge in Graph Autoencodersfor Graph Regression.- Graph Normalizing Flows
to Pre-image Free Machine Learning for Regression.- Matching-Graphs for
Building Classification Ensembles.- Maximal Independent Sets for Pooling in
Graph Neural Networks.- Graph-based Representations and
Applications.- Detecting Abnormal Communication Patterns in IoT Networks
Using Graph Neural Networks.- Cell segmentation of in situ transcriptomics
data using signed graph partitioning.- Graph-based representation for
multi-image super-resolution.- Reducing the Computational Complexity of the
Eccentricity Transform.- Graph-Based Deep Learning on the Swiss River Network.