Muutke küpsiste eelistusi

E-raamat: Heterogeneous Information Network Analysis and Applications

  • Formaat: PDF+DRM
  • Sari: Data Analytics
  • Ilmumisaeg: 25-May-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319562124
  • Formaat - PDF+DRM
  • Hind: 147,58 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Data Analytics
  • Ilmumisaeg: 25-May-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319562124

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book offers researchers an understanding of the fundamental issues and a good starting point to work on this rapidly expanding field. It provides a comprehensive survey of current developments of heterogeneous information network. It also presents the newest research in applications of heterogeneous information networks to similarity search, ranking, clustering, recommendation.  This information will help researchers to understand how to analyze networked data with heterogeneous information networks. Common data mining tasks are explored, including similarity search, ranking, and recommendation. The book illustrates some prototypes which analyze networked data.  Professionals and academics working in data analytics, networks, machine learning, and data mining will find this content valuable. It is also suitable for advanced-level students in computer science who are interested in networking or pattern recognition.

1. Introduction1.1 Basic concepts and definitions1.2 Comparisons with related concepts1.3 Example Datasets of HIN1.4 Why Heterogeneous Information Network Analysis1.5 Organization of the book2. Summarization of the developments2.1 Similarity search2.2 Clustering2.3 Classification2.4 Link Prediction2.5 Ranking2.6 Recommendation2.7 Information fusion2.8 Other applications2.9 Application systems3. Uniform relevance measure of heterogeneous objects4. Path based Ranking5. Ranking based Clustering6. Recommendation with heterogeneous information7. Information fusion with heterogeneous network8. Prototype system9. Future research directions10. Conclusion
1. Introduction.-
2. Summarization of the developments.- 3.Uniform
relevance measure of heterogeneous objects.-
4. Path based Ranking.-
5.
Ranking based Clustering.-
6. Recommendation with heterogeneous information.-
7.  Information fusion with heterogeneous network.-
8. Prototype system.-
9.
Future research directions.-
10. Conclusion.