Muutke küpsiste eelistusi

E-raamat: Industrial Wireless Sensor Networks: Applications, Protocols, and Standards

Edited by (University of Pretoria, South Africa), Edited by (Bahcesehir University, Istanbul, Turkey)
  • Formaat: 406 pages
  • Sari: Industrial Electronics
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781466500525
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 100,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 406 pages
  • Sari: Industrial Electronics
  • Ilmumisaeg: 19-Dec-2017
  • Kirjastus: CRC Press Inc
  • Keel: eng
  • ISBN-13: 9781466500525
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The collaborative nature of industrial wireless sensor networks (IWSNs) brings several advantages over traditional wired industrial monitoring and control systems, including self-organization, rapid deployment, flexibility, and inherent intelligent processing. In this regard, IWSNs play a vital role in creating more reliable, efficient, and productive industrial systems, thus improving companies competitiveness in the marketplace. Industrial Wireless Sensor Networks: Applications, Protocols, and Standards examines the current state of the art in industrial wireless sensor networks and outlines future directions for research.

What Are the Main Challenges in Developing IWSN Systems?

Featuring contributions by researchers around the world, this book explores the software and hardware platforms, protocols, and standards that are needed to address the unique challenges posed by IWSN systems. It offers an in-depth review of emerging and already deployed IWSN applications and technologies, and outlines technical issues and design objectives. In particular, the book covers radio technologies, energy harvesting techniques, and network and resource management. It also discusses issues critical to industrial applications, such as latency, fault tolerance, synchronization, real-time constraints, network security, and cross-layer design. A chapter on standards highlights the need for specific wireless communication standards for industrial applications.

A Starting Point for Further Research

Delving into wireless sensor networks from an industrial perspective, this comprehensive work provides readers with a better understanding of the potential advantages and research challenges of IWSN applications. A contemporary reference for anyone working at the cutting edge of industrial automation, communication systems, and networks, it will inspire further exploration in this promising research area.

Arvustused

"... an excellent book edited and coauthored by world-renowned specialists. ... The textbook offers an in-depth state of the art in sensor network technologies for industry applications while also dealing with emerging and already-deployed industrial wireless sensor network applications and technologies. ... All the chapters are easy to read, and hundreds of references are provided at the end of each chapter. ... Industrial Wireless Sensor Networks: Applications, Protocols, and Standards is a valuable tool for students, practicing engineers, researchers, entrepreneurs, and scientists working in the areas of sensor networks and devices, industrial computer and sensor networks, instrumentation, and electrical and computer engineering." Fernando A. Silva, from IEEE Industrial Electronics Magazine, December 2014

List of Figures
xvii
List of Tables
xxi
Preface xxiii
Author Biographies xxxi
1 Applications of Industrial Wireless Sensor Networks
1(22)
Milan Erdelj
Nathalie Mitton
Enrico Natalizio
1.1 Introduction
2(2)
1.2 Technological Challenges
4(2)
1.3 Environmental Sensing Applications
6(2)
1.3.1 Concept and Objectives
6(1)
1.3.2 Existing Solutions
7(1)
1.3.2.1 Pollution
7(1)
1.3.2.2 Hazard
7(1)
1.3.2.3 Security
8(1)
1.4 Condition Monitoring Applications
8(4)
1.4.1 Concept and Objectives
8(1)
1.4.2 Existing Solutions
9(1)
1.4.2.1 Structural Health Monitoring
9(2)
1.4.2.2 Equipment Condition Monitoring
11(1)
1.4.2.3 Human Being Monitoring
12(1)
1.5 Process and Service Monitoring Applications
12(4)
1.5.1 Concept and Objectives
12(1)
1.5.2 Existing Solutions
13(1)
1.5.2.1 Process and Service Provision Evaluation
14(1)
1.5.2.2 Process and Service Provision Improvement
15(1)
1.6 Commercial Solutions for IWSN
16(1)
1.7 Conclusions
16(7)
References
18(5)
2 Machine Condition Monitoring with Industrial Wireless Sensor Networks
23(24)
Neil W. Bergmann
Liqun Hou
2.1 Introduction
24(1)
2.2 System Requirements of Industrial Wireless Sensor Networks
24(3)
2.2.1 Industrial Wireless Sensor Networks Application Cases
24(2)
2.2.2 System Requirements of IWSNs
26(1)
2.3 Resource Constraint versus Higher System Requirements
27(2)
2.3.1 Resource Constrained Wireless Sensor Nodes
27(2)
2.3.2 Resource Constraints versus Higher System Requirements
29(1)
2.4 Standards and Protocols of Industrial Wireless Sensor Networks
29(3)
2.4.1 ZigBee
30(1)
2.4.2 Wireless HART
31(1)
2.4.3 ISA100.11a
31(1)
2.4.4 Other Protocols for IWSNs
31(1)
2.5 On-sensor Data Processing for IWSNs
32(8)
2.5.1 Experimental System Architecture
32(1)
2.5.2 Experimental Validation
33(7)
2.6 Energy Harvesting for Wireless Sensor Nodes
40(1)
2.7 Conclusions
41(6)
References
42(5)
3 Wireless Sensor Networks for Intelligent Transportation Applications: A Survey
47(32)
Kay-Soon Low
Marc Caesar
R. Talampas
3.1 Introduction
47(2)
3.2 Traffic Monitoring and Control System
49(4)
3.3 Intelligent Car Park Management System
53(4)
3.3.1 WSN-Based Car Park Management System
53(2)
3.3.2 Sensor Technology
55(2)
3.4 Intra-Vehicle Applications
57(3)
3.4.1 Intra-Vehicle Communication Link Quality Studies
58(1)
3.4.2 UWB-Based WSN
59(1)
3.4.3 Other Issues
59(1)
3.5 Road Safety
60(3)
3.5.1 Road Sensor Networks
60(1)
3.5.2 Vehicular Sensor Networks (VSNs) for Road Safety
61(2)
3.6 Implementation Issues
63(5)
3.6.1 Interference
64(1)
3.6.2 Power Consumption
65(3)
3.6.3 Security Issues
68(1)
3.7 Conclusions
68(11)
References
69(10)
4 Design Challenges and Objectives in Industrial Wireless Sensor Networks
79(22)
Johan Akerberg
Mikael Gidlund
Tomas Lennvall
Krister Landerns
Mats Bjokman
4.1 Introduction
79(5)
4.2 Applications and Requirements for Industrial Automation
84(6)
4.2.1 Targeted Applications
85(2)
4.2.2 Requirements
87(2)
4.2.3 Design Objectives
89(1)
4.3 Research Challenges
90(7)
4.3.1 Safety
91(1)
4.3.2 Security
91(1)
4.3.3 Availability
92(1)
4.3.4 Real-time Performance
93(1)
4.3.5 System Integration and Deployment
94(1)
4.3.6 Coexistence and Interference Avoidance
95(1)
4.3.7 Energy Consumption
96(1)
4.4 Conclusions
97(4)
References
97(4)
5 Resource Management and Scheduling in WSNs Powered by Ambient Energy Harvesting
101(18)
Neyre Tekbiyik
Elif Uysal-Biyikoglu
5.1 Introduction
101(2)
5.2 Algorithms
103(8)
5.2.1 SSEA and ASEA Schemes
103(1)
5.2.2 A Practical Flow Control Scheme
104(1)
5.2.3 Fixed Power (FP), Minimum-Interference (MI), and Multi-Sink (MS) Power Allocation Schemes
105(1)
5.2.4 QuickFix/SnapIt Algorithms
106(1)
5.2.5 DRABP and NRABP Schemes
106(1)
5.2.6 Duty Cycling and Power Management Algorithm
107(1)
5.2.7 MAX-UTILITY and MAX-UTILITY-D Algorithms
108(1)
5.2.8 NetOnline Algorithm
109(1)
5.2.9 The Joint Rate Control, Power Allocation, and Routing Algorithm
110(1)
5.3 Comparison of the Algorithms
111(3)
5.4 Conclusions
114(5)
References
114(5)
6 Energy Harvesting Techniques for Industrial Wireless Sensor Networks
119(18)
Gurkan Tuna
Vehbi Cagri Gungor
Kayhan Gulez
6.1 Introduction
119(1)
6.2 Wireless Sensor Networks for Industrial Applications
120(3)
6.2.1 Challenges
121(1)
6.2.2 Design Goals
122(1)
6.3 Energy Harvesting Techniques for Industrial Wireless Sensor Networks
123(6)
6.3.1 Solar Energy Harvesting
126(1)
6.3.2 Thermal Energy Harvesting
126(1)
6.3.3 Vibration-Based Energy Harvesting
127(1)
6.3.4 Air Flow Energy Harvesting
127(1)
6.3.5 Acoustic Energy Harvesting
128(1)
6.3.6 Magnetic Field Energy Harvesting
128(1)
6.3.7 Electromagnetic Wave Energy Harvesting
128(1)
6.3.8 Radio Frequency Energy Harvesting
128(1)
6.3.9 Envisaged Energy Harvesting Solutions
129(1)
6.4 Open Research Issues
129(2)
6.5 Conclusions
131(6)
References
131(6)
7 Fault Tolerant Industrial Wireless Sensor Networks
137(24)
Ataul Bari
Jin Jiang
Arunita Jaekel
7.1 Introduction
137(3)
7.2 Faults in IWSNs
140(3)
7.2.1 Sources of Faults in IWSNs
140(1)
7.2.2 Fault Detection in IWSNs
141(1)
7.2.3 Fault Recovery in IWSNs
141(1)
7.2.4 Network Faults in IWSNs
142(1)
7.3 Fault Handling in IWSN Standards
143(8)
7.3.1 ZigBee Networks
143(5)
7.3.2 WirelessHART Networks
148(1)
7.3.3 ISA100.11a Networks
149(2)
7.4 Fault-Tolerant IWSN Design
151(4)
7.4.1 Fault Tolerant Routing
151(2)
7.4.2 Fault Tolerant Node Placement and Clustering
153(2)
7.5 Conclusions
155(6)
References
156(5)
8 Network Architectures for Delay Critical Industrial Wireless Sensor Networks
161(28)
Nazif Cihan Tas
8.1 Introduction
161(2)
8.2 Industrial Applications and Settings
163(3)
8.2.1 IWSN Applications
163(1)
8.2.1.1 Monitoring Applications
163(1)
8.2.1.2 Cable Replacement Applications
164(1)
8.2.2 Why (and Why Not) Wireless in an I(W)SN?
165(1)
8.3 A View on a Distributed Control System
166(4)
8.3.1 Challenges in IWSNs
168(2)
8.4 Delay Sensitive Networks
170(14)
8.4.1 Proposed Mechanisms
171(1)
8.4.1.1 Early Retirement (ER)
172(1)
8.4.1.2 Variable Redundancy Error Correction (PHY+)
173(1)
8.4.1.3 Enhanced MAC for Delay Sensitive Networks (MAC+)
174(1)
8.4.2 Simulations
175(3)
8.4.2.1 ER and PHY+ Simulations and Discussions
178(2)
8.4.2.2 MAC+ Simulations and Discussions
180(3)
8.4.2.3 General Discussions
183(1)
8.5 Conclusions
184(5)
References
184(5)
9 Network Synchronization in Industrial Wireless Sensor Networks
189(18)
Carlos H. Rentel
9.1 Introduction
189(3)
9.2 Clocks
192(2)
9.3 Network Synchronization Protocols for Industrial Wireless Sensor Networks
194(9)
9.3.1 Timing-Sync Protocol for Sensor Networks (TPSN)
195(2)
9.3.2 Reference Broadcast Synchronization (RBS)
197(1)
9.3.3 Random Time Source Protocol
198(1)
9.3.4 Kalman-Based Industrial Wireless Sensor Network Synchronization
199(1)
9.3.5 Mutual Network Synchronization
199(4)
9.4 Parameter Estimation in Network Synchronization for Industrial Wireless Sensor Networks
203(1)
9.5 Conclusions
204(3)
References
205(2)
10 Wireless Control Networks with Real-Time Constraints
207(24)
Alphan Ulusoy
Ozgur Gurbuz
Ahmet Onat
10.1 Introduction
207(3)
10.2 The Wireless Control Network and the Industrial Setting
210(2)
10.3 Wireless Network Alternatives
212(4)
10.3.1 IEEE 802.11
212(1)
10.3.2 IEEE 802.11 with Cooperative Medium Access Control Protocol (COMAC)
213(1)
10.3.3 IEEE 802.15.4
214(2)
10.4 Wireless Model Based Predictive Networked Control System (WMBPNCS)
216(3)
10.4.1 The Plant and the Control Algorithm
218(1)
10.5 Case Studies
219(7)
10.5.1 Performance Using IEEE 802.11
220(3)
10.5.2 Performance Using COMAC
223(2)
10.5.3 Performance Using IEEE 802.15.4
225(1)
10.6 Conclusions
226(5)
References
228(3)
11 Medium Access Control and Routing in Industrial Wireless Sensor Networks
231(28)
Aysegul Tuysuz Erman
Ozlem Durmaz Incel
11.1 Introduction
232(2)
11.2 Taxonomy of MAC Protocols
234(8)
11.2.1 Requirements of IWSNs at the MAC Layer
234(1)
11.2.2 Outline of Standardization Activities at the MAC Layer
235(1)
11.2.3 MAC Protocols Proposed for IWSNs
236(4)
11.2.4 WSN MAC Protocols with Latency Bound and to Support Real-Time Operation
240(2)
11.2.5 WSN MAC Protocols with Other Objectives Related to the Requirements of IWSNs
242(1)
11.2.6 Classification
242(1)
11.3 Taxonomy of Routing Protocols
242(8)
11.3.1 Routing Requirements of IWSNs
244(2)
11.3.2 Standardization Efforts for Routing
246(1)
11.3.3 Routing Protocols Proposed for IWSNs
247(2)
11.3.4 WSN Routing Protocols with QoS Guarantee for Reliability and Timeliness
249(1)
11.3.5 Classification
249(1)
11.4 Cross Layer Protocols
250(2)
11.5 Future Research Directions / Open Problems
252(1)
11.6 Conclusions
253(6)
References
254(5)
12 QoS-Aware Routing for Industrial Wireless Sensor Networks
259(24)
Berta Carballido Villaverde
Susan Rea
Dirk Pesch
12.1 Introduction
260(1)
12.2 Industrial Applications: QoS Requirements and Key Performance Indicators
261(5)
12.2.1 Classification Based on Type of Application Data
262(1)
12.2.2 Classification Based on Application Data Criticality
263(1)
12.2.3 Key Performance Indicators
264(2)
12.3 General Considerations for Routing in Industrial Environments
266(4)
12.3.1 WSN Topologies in Industrial Scenarios
266(1)
12.3.2 Challenges
267(1)
12.3.2.1 Low Power Operation & Delay
268(1)
12.3.2.2 Lossy Connectivity & Reliability
269(1)
12.3.2.3 Memory Footprint & Control Overhead
269(1)
12.3.2.4 Conflicting QoS Requirements
269(1)
12.3.2.5 Resource Allocation & Priority
269(1)
12.4 Current Approaches for Routing in Industrial Environments
270(5)
12.4.1 Wireless HART & ISA100
270(1)
12.4.2 ZigBee
271(1)
12.4.3 Proprietary Wireless Sensing in IWSN
271(1)
12.4.4 RPL
272(1)
12.4.5 Metrics for QoS Aware Routing
273(1)
12.4.5.1 Single Metric Routing
273(2)
12.4.5.2 Multiple Metric Routing
275(1)
12.5 Conclusions
275(1)
12.6 Glossary
276(7)
References
277(6)
13 Reliable and Robust Communications in Industrial Wireless Sensor Networks
283(14)
Sasan Khoshroo
Honggang Wang
Yalin Wang
13.1 Introduction
283(3)
13.2 DSC Information Quality and Resource Allocation
286(2)
13.2.1 Definition of Information Quality with Multirate DSC Compression Dependency
286(1)
13.2.2 Resource Allocation for Multirate Wireless Transmissions
287(1)
13.3 Channel Coding
288(3)
13.3.1 Hamming Codes
289(1)
13.3.2 Reed-Solomon (RS) Codes
289(1)
13.3.3 Cross-Layer Design
290(1)
13.4 Information Efficiency Optimization Problem Formulation
291(1)
13.5 Cross-Layer Design Performance
292(1)
13.5.1 Selective Channel Coding
292(1)
13.6 Conclusions
293(4)
References
293(4)
14 Network Security in Industrial Wireless Sensor Networks
297(22)
Nouha Oualha
14.1 Introduction
298(1)
14.2 Industrial Wireless Sensor Networks
298(2)
14.2.1 Lifecycle of a Sensor
299(1)
14.2.2 Wireless Sensor Networks for Smart Energy Supply and Demand Optimization
299(1)
14.3 Security Challenges in Industrial Wireless Sensor Networks
300(3)
14.3.1 Resource Constraints
301(1)
14.3.2 Scalability
302(1)
14.3.3 Mobility Support
302(1)
14.3.4 Intermittent Connectivity
302(1)
14.3.5 Privacy
302(1)
14.4 Authentication and Network Access Control
303(3)
14.4.1 Bootstrapping
303(1)
14.4.2 Authentication and Network Access Control
304(1)
14.4.3 Mobility-Supported Authentication
304(1)
14.4.4 Discussion
305(1)
14.5 Key Management
306(2)
14.5.1 Key Pre-distribution
306(1)
14.5.2 Key Update
307(1)
14.5.3 Discussion
307(1)
14.6 Security Maintenance
308(1)
14.6.1 Software Update
308(1)
14.6.2 Discussion
308(1)
14.7 Privacy Management
309(2)
14.7.1 Pseudonymity
309(1)
14.7.2 Anonymization Techniques
310(1)
14.7.3 Discussion
311(1)
14.8 Conclusions
311(8)
References
313(6)
15 Cognitive Radio Sensor Networks in Industrial Applications
319(20)
A. Ozan Bicen
Ozgur B. Akan
15.1 Introduction
319(2)
15.2 Advantages of CRSN for Industrial Applications
321(1)
15.3 CRSN Architecture for Industrial Applications
322(4)
15.4 Spectrum Management Requirements of CRSN in Industrial Applications
326(4)
15.4.1 Spectrum Sensing
326(2)
15.4.2 Spectrum Decision
328(1)
15.4.3 Spectrum Mobility
329(1)
15.5 Communication Protocol Requirements of CRSN in Industrial Applications
330(4)
15.5.1 Cognitive Physical Layer
330(1)
15.5.2 Spectrum-Aware Collaborative Medium Access Control
331(1)
15.5.3 Spectrum-Aware Event-Oriented Routing
332(1)
15.5.4 Reliable and Spectrum-Aware Event Transport
333(1)
15.6 Conclusions
334(5)
References
335(4)
16 Industrial WSN Standards
339(20)
Tomas Lennvall
Krister Landernas
Mikael Gidlund
Johan Akerberg
16.1 Introduction
339(2)
16.2 History
341(1)
16.3 Regulations and Standards
341(2)
16.3.1 Regulations
342(1)
16.3.2 Standards
343(1)
16.3.3 Specifications
343(1)
16.4 Industrial Requirements
343(1)
16.5 IEEE 802.15.4
344(1)
16.5.1 Introduction
344(1)
16.5.2 Protocol Overview
344(1)
16.6 Wireless HART
345(3)
16.6.1 Protocol Overview
345(2)
16.6.2 Protocol Features
347(1)
16.7 ISA100.11a
348(3)
16.7.1 Protocol Overview
348(1)
16.7.2 Protocol Features
349(2)
16.8 WIA-PA
351(3)
16.8.1 Protocol Overview
351(2)
16.8.2 Protocol Features
353(1)
16.9 Conclusions
354(1)
16.10 Glossary
355(4)
References
356(3)
Index 359
V. Çari Güngör is an assistant professor and co-director of the Computer Networks and Mobile Communications Lab at the Department of Computer Engineering at Bahcesehir University in Istanbul, Turkey. Before joining Bahcesehir University, he worked at Eaton Corporations Innovation Center in Wisconsin, USA as a project leader. Dr. Güngör has authored more than 50 papers in refereed journals and international conference proceedings, and has been serving as an editor, reviewer, and program committee member to numerous journals and conferences in these areas. He is also a co-recipient of the IEEE Transactions on Industrial Informatics Best Paper Award in 2012.

Gerhard P. Hancke has been engaged in engineering education, research, and management for more than 37 years. He is the program coordinator for computer engineering at the University of Pretoria and has played a major role in developing this program. He is the founder and head of the Advanced Sensor Networks Group, a collaborative initiative with the Meraka Institute at the Council for Scientific and Industrial Research (CSIR), and also collaborates in research projects internationally. He has published more than 150 papers in refereed journals and international conference proceedings. Before joining academia, he was a senior engineer with the South African Atomic Energy Board.