Muutke küpsiste eelistusi

E-raamat: Intelligent Data Engineering and Automated Learning - IDEAL 2024: 25th International Conference, Valencia, Spain, November 20-22, 2024, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 86,44 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This two-volume set, LNCS 15346 and LNCS 15347, constitutes the proceedings of the 25th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2024, held in Valencia, Spain, during November 2022, 2024. 





The 86 full papers and 6 short papers presented in this book were carefully reviewed and selected from 130 submissions. IDEAL 2024 is focusing on Big Data Analytics and Privacy, Machine Learning & Deep Learning for Real-World Applications, Data Mining and Pattern Recognition, Information Retrieval and Management, Bio and Neuro-Informatics, and Hybrid Intelligent Systems and Agents.
.- A Divide-and-Conquer Approach for Container License Plate Detection
Using Multi-Frame Analysis.

.- Smart Sign Language Decoder.

.- Hotels Price Prediction Based on Country Specific Data.

.- New Approach to Support the Breast Cancer Diagnosis Process Using Frequent
Pattern Growth and Stacking Based on Machine Learning Techniques.

.- An Ontology-Lexicon-Driven Approach for Refining Sentiment Analysis
Processes.

.- Characterising Class Imbalance in Transportation Mode Detection: An
Experimental Study.

.- LeakG3PD: a Python generator and simulated Water Distribution System
dataset.

.- Providing Informative Feedback in a Low-Cost Rehabilitation System using
Machine Learning.

.- Noise tolerance and robustness ranking in Machine Learning models.

.- A supervised clustering approach to detect similar soccer players.

.- Three-Part Genetic Algorithm to Optimize the Outbound Train Loading
Process Using a Multiple Travelling Salesman Problem Approach.

.- Using Data Augmentation For Improving Text Summarization.

.- Special Session on Predictive and Prescriptive Models for Smart Cities
Applications.

.- Sustainable demand-responsive transportation: A case study in rural
Guimarães.

.- CLARA: Semi-Automatic Retraining System.

.- A grid-based approach for ambulance dispatch in critical emergencies
within static systems.

Optimizing vehicle coordination at multi-lane intersections using traffic
control algorithms.

.- Optimizing Pedestrian Paths to Minimize Exposure to Urban Pollution
Through Traffic Data Analysis.

.- Optimizing UCO Container Placement in Urb. Envs: A GA Approach.

.- Special Session on Computational intelligence on Renewable Energies and
Sustainable Automation.

.- Data analysis and anomaly detection in a wind farm with k-Nearest
Neighbors.

.- Development of a Database for Convolutional Neural Networks Simulating CFD
Analysis.

.- Special Session on Example-based Explainable Artificial Intelligence.

Entity Examples for Explainable Query Target Type Identification with LLMs..

Near Hit and Near Miss Example Explanations for Model Revision in Binary
Image Classification

.- Special Session on Explainability and Fairness in Decision Support.

.- Evaluative Customized Naïve Associative Classifier: promoting equity in AI
for the selection and promotion of human resources.

Clustering of Serious Game Traces using Formal Concept Analysis.

LORE4GroupRS: Explaining group recommendations supported by a local
rule-based approach.

.- Special Session on Federated Learning, Intelligent Fusion and Applications
(FLIFA)

.- Comparing MAE and RMSE as fitness of Genetic Algorithm for optimizing Echo
State Network hyperparameters with different probabilistic distributions.

.- Federated Learning with Discriminative Naive Bayes Classifier.

.- Advances in Home Care and Real-Time Vital Signs Monitoring.

.- Exploring Data Symbion EI deep learning and model sharing modules.

.- A New Dataset for Analyzing Battery Failures in Wheelchairs.

.- A Methodology for Automated Conversion of Axis-Aligned to Polygonal and
Oriented Bounding Box Annotations in Aerial Imagery Object Detection.

.- Multi-Layered Asynchronous Consensus-based Federated Learning (MACoL).

.- .- Comparative study of Federated Learning algorithms based on SPADE
agents.

.- Robotic Precision Fitness: Accurate Pose Training for Elderly
Rehabilitation.

.- Special Session on Quantum Computing for Machine Learning and Optimization
(Q4ML-Opt).

.- Hybrid Quantum Solvers in Production: how to succeed in the NISQ era?.

.- QUBO Optimization of Electrical Grid Topologies.

.-Special Session on Anomaly Detection with Machine Learning.

.- Indecision-aware Deep Active Anomaly Detection.

.- Special Session on Developing AI Curricula for Pre-University Education.

.- Educational management as an ensure of high-quality standards, focused on
the added value of a public university.

.- Identification of Areas for Improvement in Digital Pedagogical
Competencies through Information Technologies, Communication, and Artificial
Intelligence: An Innovative Approach in Teacher Training.

.- What Students Should Learn and Teachers Must Know about Artificial
Intelligence.

.- Simplification of Image Segmentation and Object Detection Teaching
Materials.

.- Educational Computer Vision Materials for Classification and Tracking of
Objects.

.- Starting point in the introduction of AI in VET: Analysis and proposals in
Spain.

.- Advancing Robotics Education: Integrating Large Language Models for
Natural Language .- Programming in VET.

.- A Comprehensive Digital Solution for Identifying and Addressing Academic
Risk in .- Middle Education.

.- Special Session on Data Selection in Machine Learning (6th Edition).

.- Data Mining In Credit Card Approval: Feature Importance as a Comparison.

.- Special Session on Computational Intelligence for Imbalanced
Classification.

.- 2D Convolutional Neural Networks for Alzheimer's Disease Classification
from Brain MRI.