ei ole lubatud
ei ole lubatud
Digitaalõiguste kaitse (DRM)
Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).
Vajalik tarkvara
Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)
PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )
Seda e-raamatut ei saa lugeda Amazon Kindle's.
1. Examples of Vector Spaces. 1.1. First Vector Space: Tuples. 1.2. Dot Product. 1.3. Application: Geometry. 1.4. Second Vector Space: Matrices. 1.5. Matrix Multiplication. 2. Matrices and Linear Systems. 2.1. Systems of Linear Equations. 2.2. Gaussian Elimination. 2.3. Application: Markov Chains. 2.4. Application: The Simplex Method. 2.5. Elementary Matrices and Matrix Equivalence. 2.6. Inverse of a Matrix. 2.7. Application: The Simplex Method Revisited. 2.8. Homogeneous/Nonhomogeneous Systems and Rank. 2.9. Determinant. 2.10. Applications of the Determinant. 2.11. Application: Lu Factorization. 3. Vector Spaces. 3.1. Definition and Examples. 3.2. Subspace. 3.3. Linear Independence. 3.4. Span. 3.5. Basis and Dimension. 3.6. Subspaces Associated with a Matrix. 3.7. Application: Dimension Theorems. 4. Linear Transformations. 4.1. Definition and Examples. 4.2. Kernel and Image. 4.3. Matrix Representation. 4.4. Inverse and Isomorphism. 4.5. Similarity of Matrices. 4.6. Eigenvalues and Diagonalization. 4.7. Axiomatic Determinant. 4.8. Quotient Vector Space. 4.9. Dual Vector Space. 5. Inner Product Spaces. 5.1. Definition, Examples and Properties. 5.2. Orthogonal and Orthonormal. 5.3. Orthogonal Matrices. 5.4. Application: QR Factorization. 5.5. Schur Triangularization Theorem. 5.6. Orthogonal Projections and Best Approximation. 5.7. Real Symmetric Matrices. 5.8. Singular Value Decomposition. 5.9. Application: Least Squares Optimization. 6. Applications in Data Analytics. 6.1. Introduction. 6.2. Direction of Maximal Spread. 6.3. Principal Component Analysis. 6.4. Dimensionality Reduction. 6.5. Mahalanobis Distance. 6.6. Data Sphering. 6.7. Fisher Linear Discriminant Function. 6.8. Linear Discriminant Functions in Feature Space. 6.9. Minimal Square Error Linear Discriminant Function. 7. Quadratic Forms. 7.1. Introduction to Quadratic Forms. 7.2. Principal Minor Criterion. 7.3. Eigenvalue Criterion. 7.4. Application: Unconstrained Nonlinear Optimization. 7.5. General Quadratic Forms. Appendix A. Regular Matrices. Appendix B. Rotations and Reflections in Two Dimensions. Appendix C. Answers to Selected Exercises.