Muutke küpsiste eelistusi

E-raamat: Introduction to Structural Dynamics

(University of Maryland, College Park)
  • Formaat: PDF+DRM
  • Sari: Cambridge Aerospace Series
  • Ilmumisaeg: 23-Oct-2006
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9780511248023
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 64,21 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Cambridge Aerospace Series
  • Ilmumisaeg: 23-Oct-2006
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9780511248023
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This is a one semester engineering textbook on linear structural dynamics analysis for advanced students.

This textbook provides the student of aerospace, civil, and mechanical engineering with all the fundamentals of linear structural dynamics analysis. It is designed for an advanced undergraduate or first year graduate course. This textbook is a departure from the usual presentation in two important respects. First, descriptions of system dynamics are based on the simpler to use Lagrange equations. Second, no organizational distinctions are made between multi-degree of freedom systems and single-degree of freedom systems. The textbook is organized on the basis of first writing structural equation systems of motion, and then solving those equations mostly by means of a modal transformation. The text contains more material than is commonly taught in one semester so advanced topics are designated by an asterisk. The final two chapters can also be deferred for later studies. The text contains numerous examples and end-of-chapter exercises.

Muu info

This is a one-semester engineering textbook on linear structural dynamics analysis for advanced students, first published in 2006.
Preface for the Student xi
Preface for the Instructor xv
Acknowledgments xvii
List of Symbols
xix
The Lagrange Equations of Motion
1(45)
Introduction
1(1)
Newton's Laws of Motion
2(3)
Newton's Equations for Rotations
5(3)
Simplifications for Rotations
8(4)
Conservation Laws
12(1)
Generalized Coordinates
12(3)
Virtual Quantities and the Variational Operator
15(4)
The Lagrange Equations
19(6)
Kinetic Energy
25(4)
Summary
29(17)
Chapter 1 Exercises
33(4)
Endnote (1): Further Explanation of the Variational Operator
37(4)
Endnote (2): Kinetic Energy and Energy Dissipation
41(1)
Endnote (3): A Rigid Body Dynamics Example Problem
42(4)
Mechanical Vibrations: Practice Using the Lagrange Equations
46(53)
Introduction
46(1)
Techniques of Analysis for Pendulum Systems
47(6)
Example Problems
53(13)
Interpreting Solutions to Pendulum Equations
66(5)
Linearizing Differential Equations for Small Deflections
71(1)
Summary
72(1)
**Conservation of Energy versus the Lagrange Equations**
73(7)
**Nasty Equations of Motion**
80(2)
**Stability of Vibratory Systems**
82(17)
Chapter 2 Exercises
85(8)
Endnote (1): The Large-Deflection, Simple Pendulum Solution
93(1)
Endnote (2): Divergence and Flutter in Multidegree of Freedom, Force Free Systems
94(5)
Review of the Basics of the Finite Element Method for Simple Elements
99(58)
Introduction
99(1)
Generalized Coordinates for Deformable Bodies
100(3)
Element and Global Stiffness Matrices
103(9)
More Beam Element Stiffness Matrices
112(11)
Summary
123(34)
Chapter 3 Exercises
133(5)
Endnote (1): A Simple Two-Dimensional Finite Element
138(8)
Endnote (2): The Curved Beam Finite Element
146(11)
FEM Equations of Motion for Elastic Systems
157(56)
Introduction
157(1)
Structural Dynamic Modeling
158(5)
Isolating Dynamic from Static Loads
163(2)
Finite Element Equations of Motion for Structures
165(7)
Finite Element Example Problems
172(14)
Summary
186(7)
**Offset Elastic Elements**
193(20)
Chapter 4 Exercises
195(10)
Endnote (1): Mass Refinement Natural Frequency Results
205(1)
Endnote (2): The Rayleigh Quotient
206(4)
Endnote (3): The Matrix Form of the Lagrange Equations
210(1)
Endnote (4): The Consistent Mass Matrix
210(1)
Endnote (5): A Beam Cross Section with Equal Bending and Twisting Stiffness Coefficients
211(2)
Damped Structural Systems
213(50)
Introduction
213(1)
Descriptions of Damping Forces
213(17)
The Response of a Viscously Damped Oscillator to a Harmonic Loading
230(9)
Equivalent Viscous Damping
239(3)
Measuring Damping
242(1)
Example Problems
243(4)
Harmonic Excitation of Multidegree of Freedom Systems
247(1)
Summary
248(15)
Chapter 5 Exercises
253(7)
Endnote (1): A Real Function Solution to a Harmonic Input
260(3)
Natural Frequencies and Mode Shapes
263(71)
Introduction
263(2)
Natural Frequencies by the Determinant Method
265(8)
Mode Shapes by Use of the Determinant Method
273(6)
**Repeated Natural Frequencies**
279(10)
Orthogonality and the Expansion Theorem
289(4)
The Matrix Iteration Method
293(7)
**Higher Modes by Matrix Iteration**
300(7)
Other Eigenvalue Problem Procedures
307(4)
Summary
311(4)
**Modal Tuning**
315(19)
Chapter 6 Exercises
320(3)
Endnote (1): Linearly Independent Quantities
323(1)
Endnote (2): The Cholesky Decomposition
324(2)
Endnote (3): Constant Momentum Transformations
326(3)
Endnote (4): Illustration of Jacobi's Method
329(3)
Endnote (5): The Gram-Schmidt Process for Creating Orthogonal Vectors
332(2)
The Modal Transformation
334(68)
Introduction
334(1)
Initial Conditions
334(3)
The Modal Transformation
337(3)
Harmonic Loading Revisited
340(2)
Impulsive and Sudden Loadings
342(9)
The Modal Solution for a General Type of Loading
351(2)
Example Problems
353(10)
Random Vibration Analyses
363(3)
Selecting Mode Shapes and Solution Convergence
366(5)
Summary
371(2)
**Aeroelasticity**
373(15)
**Response Spectrums**
388(14)
Chapter 7 Exercises
391(5)
Endnote (1): Verification of the Duhamel Integral Solution
396(2)
Endnote (2): A Rayleigh Analysis Example
398(1)
Endnote (3): An Example of the Accuracy of Basic Strip Theory
399(1)
Endnote (4): Nonlinear Vibrations
400(2)
Continuous Dynamic Models
402(49)
Introduction
402(1)
Derivation of the Beam Bending Equation
402(4)
Modal Frequencies and Mode Shapes for Continuous Models
406(25)
Conclusion
431(20)
Chapter 8 Exercises
438(1)
Endnote (1): The Long Beam and Thin Plate Differential Equations
439(3)
Endnote (2): Derivation of the Beam Equation of Motion Using Hamilton's Principle
442(3)
Endnote (3): Sturm--Liouville Problems
445(1)
Endnote (4): The Bessel Equation and Its Solutions
445(4)
Endnote (5): Nonhomogeneous Boundary Conditions
449(2)
Numerical Integration of the Equations of Motion
451(32)
Introduction
451(1)
The Finite Difference Method
452(8)
Assumed Acceleration Techniques
460(3)
Predictor-Corrector Methods
463(5)
The Runge-Kutta Method
468(6)
Summary
474(1)
**Matrix Function Solutions**
475(8)
Chapter 9 Exercises
480(3)
Appendix I. Answers to Exercises
483(48)
Chapter 1 Solutions
483(3)
Chapter 2 Solutions
486(8)
Chapter 3 Solutions
494(4)
Chapter 4 Solutions
498(11)
Chapter 5 Solutions
509(7)
Chapter 6 Solutions
516(3)
Chapter 7 Solutions
519(6)
Chapter 8 Solutions
525(4)
Chapter 9 Solutions
529(2)
Appendix II. Fourier Transform Pairs
531(6)
Introduction to Fourier Transforms
531(6)
Index 537


Bruce K. Donaldson was first exposed to aircraft inertia loads when he was a carrier-based U.S. Navy anti-submarine pilot. He subsequently worked in the structural dynamics area at the Boeing Co. and at the Beech Aircraft Co. in Wichita, KS before returning to school and then embarking on an academic career in the area of structural analysis. He became a professor of Aerospace Engineering, and then a professor of Civil and Environmental Engineering at the University of Maryland. Professor Donaldson is the recipient of numerous teaching awards, and has maintained industrial contacts, working various summers at government agencies and for commercial enterprises, the last being Lockheed Martin at Fort Worth, Texas.