Preface |
|
xiii | |
|
PART I NEWTONIAN MECHANICS |
|
|
|
|
3 | (12) |
|
|
7 | (1) |
|
|
8 | (3) |
|
|
11 | (4) |
|
|
13 | (2) |
|
|
15 | (9) |
|
|
22 | (2) |
|
3 Introductory Rotational Dynamics |
|
|
24 | (10) |
|
|
33 | (1) |
|
4 The Harmonic Oscillator |
|
|
34 | (10) |
|
|
38 | (6) |
|
5 Wave Mechanics & Elements of Mathematical Physics |
|
|
44 | (11) |
|
PART II LAGRANGIAN MECHANICS |
|
|
|
6 Coordinates & Constraints |
|
|
55 | (6) |
|
|
59 | (2) |
|
7 The Stationary Action Principle |
|
|
61 | (28) |
|
|
70 | (2) |
|
7.2 Higher-Order Theories & the Ostrogradsky Equation |
|
|
72 | (1) |
|
|
73 | (1) |
|
7.4 Functions & Functional |
|
|
74 | (2) |
|
|
76 | (2) |
|
|
78 | (1) |
|
7.7 Weierstrass-Erdmann Conditions for Broken Extremals |
|
|
79 | (1) |
|
7.8 Hamilton-Suslov Principle |
|
|
79 | (10) |
|
|
80 | (9) |
|
8 Constrained Lagrangian Mechanics |
|
|
89 | (11) |
|
8.1 Holonomic Constraints |
|
|
89 | (4) |
|
8.2 Non-Holonomic Constraints |
|
|
93 | (7) |
|
|
96 | (4) |
|
9 Point Transformations in Lagrangian Mechanics |
|
|
100 | (7) |
|
|
103 | (4) |
|
10 The Jacobi Energy Function |
|
|
107 | (8) |
|
|
112 | (3) |
|
11 Symmetries &: Lagrangian-Hamilton-Jacobi Theory |
|
|
115 | (15) |
|
|
115 | (5) |
|
|
120 | (2) |
|
11.3 Isotropic Symmetries |
|
|
122 | (1) |
|
11.4 Caratheodory-Hamilton-Jacobi theory |
|
|
123 | (7) |
|
|
124 | (6) |
|
12 Near-Equilibrium Oscillations |
|
|
130 | (17) |
|
|
137 | (10) |
|
|
140 | (7) |
|
13 Virtual Work & d'Alembert's Principle |
|
|
147 | (20) |
|
13.1 Gauss's Least Constraint & Jourdain's Principle |
|
|
153 | (3) |
|
13.2 The Gibbs-Appell Equations |
|
|
156 | (11) |
|
|
158 | (9) |
|
PART III CANONICAL MECHANICS |
|
|
|
14 The Hamiltonian & Phase Space |
|
|
167 | (7) |
|
|
172 | (2) |
|
15 Hamilton's Principle in Phase Space |
|
|
174 | (5) |
|
|
178 | (1) |
|
16 Hamilton's Equations & Routhian Reduction |
|
|
179 | (11) |
|
16.1 Phase Space Conservation Laws |
|
|
181 | (2) |
|
|
183 | (7) |
|
17 Poisson Brackets & Angular Momentum |
|
|
190 | (12) |
|
17.1 Poisson Brackets & Angular Momenta |
|
|
195 | (2) |
|
17.2 Poisson Brackets & Symmetries |
|
|
197 | (5) |
|
|
200 | (2) |
|
18 Canonical &: Gauge Transformations |
|
|
202 | (15) |
|
18.1 Canonical Transformations I |
|
|
202 | (4) |
|
18.2 Canonical Transformations II |
|
|
206 | (5) |
|
18.3 Infinitesimal Canonical Transformations |
|
|
211 | (6) |
|
|
214 | (3) |
|
19 Hamilton-Jacobi Theory |
|
|
217 | (20) |
|
19.1 Hamilton-Jacobi Theory I |
|
|
217 | (7) |
|
19.2 Hamilton-Jacobi Theory II |
|
|
224 | (13) |
|
|
229 | (8) |
|
20 Liouville's Theorem &: Classical Statistical Mechanics |
|
|
237 | (30) |
|
20.1 Liouville's Theorem & the Classical Propagator |
|
|
237 | (7) |
|
20.2 Koopman-von Neumann Theory |
|
|
244 | (2) |
|
20.3 Classical Statistical Mechanics |
|
|
246 | (9) |
|
20.4 Symplectic Integrators |
|
|
255 | (12) |
|
|
259 | (8) |
|
21 Constrained Hamiltonian Dynamics |
|
|
267 | (10) |
|
|
274 | (3) |
|
22 Autonomous Geometrical Mechanics |
|
|
277 | (32) |
|
22.1 A Coordinate-Free Picture |
|
|
284 | (7) |
|
22.2 Poisson Manifolds & Symplectic Reduction |
|
|
291 | (5) |
|
22.3 Geometrical Lagrangian Mechanics |
|
|
296 | (4) |
|
22.4 Elements of Constrained Geometry |
|
|
300 | (9) |
|
|
303 | (6) |
|
23 The Structure of Phase Space |
|
|
309 | (16) |
|
23.1 Time-Dependent Geometrical Mechanics |
|
|
313 | (6) |
|
23.2 Picturing Phase Space |
|
|
319 | (6) |
|
|
322 | (3) |
|
24 Near-Integrable Systems |
|
|
325 | (20) |
|
24.1 Canonical Perturbation Theory |
|
|
325 | (8) |
|
24.2 KAM Theory & Elements of Chaos |
|
|
333 | (12) |
|
PART IV CLASSICAL FIELD THEORY |
|
|
|
25 Lagrangian Field Theory |
|
|
345 | (8) |
|
|
350 | (3) |
|
26 Hamiltonian Field Theory |
|
|
353 | (4) |
|
27 Classical Electromagnetism |
|
|
357 | (12) |
|
|
365 | (4) |
|
28 Noether's Theorem for Fields |
|
|
369 | (16) |
|
|
376 | (9) |
|
29 Classical Path-Integrals |
|
|
385 | (12) |
|
29.1 Configuration Space Integrals |
|
|
385 | (1) |
|
29.2 Phase Space Integrals |
|
|
386 | (11) |
|
PART V PRELIMINARY MATHEMATICS |
|
|
|
|
397 | (3) |
|
|
400 | (6) |
|
32 Partial Differentiation |
|
|
406 | (13) |
|
|
419 | (3) |
|
|
422 | (15) |
|
35 Differential Equations |
|
|
437 | (6) |
|
36 Calculus of Variations |
|
|
443 | (10) |
|
PART VI ADVANCED MATHEMATICS |
|
|
|
|
453 | (7) |
|
|
460 | (27) |
|
PART VII EXAM-STYLE QUESTIONS |
|
|
|
Appendix A Noether's Theorem Explored |
|
|
487 | (4) |
|
Appendix B The Action Principle Explored |
|
|
491 | (3) |
|
|
491 | (3) |
|
Appendix C Useful Relations |
|
|
494 | (2) |
|
Appendix D Poisson & Nambu Brackets Explored |
|
|
496 | (6) |
|
D.1 Symplectic Notation & Nambu Brackets |
|
|
497 | (5) |
|
Appendix E Canonical Transformations Explored |
|
|
502 | (4) |
|
Appendix F Action-Angle Variables Explored |
|
|
506 | (5) |
|
Appendix G Statistical Mechanics Explored |
|
|
511 | (3) |
|
|
511 | (1) |
|
|
512 | (2) |
|
|
514 | (13) |
|
|
514 | (1) |
|
|
515 | (1) |
|
|
516 | (1) |
|
H.4 Joseph-Louis Lagrange |
|
|
517 | (2) |
|
|
519 | (1) |
|
|
520 | (2) |
|
|
522 | (1) |
|
|
522 | (2) |
|
H.9 Ludwig Eduard Boltzmann |
|
|
524 | (1) |
|
|
525 | (1) |
|
H.11 Hendrika van Leeuwen |
|
|
526 | (1) |
Bibliography |
|
527 | (6) |
Index |
|
533 | |