Muutke küpsiste eelistusi

E-raamat: Lie Algebras and Applications

  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 708
  • Ilmumisaeg: 22-Feb-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540362395
  • Formaat - PDF+DRM
  • Hind: 74,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Lecture Notes in Physics 708
  • Ilmumisaeg: 22-Feb-2007
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783540362395

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In the second part of the 20th century, algebraic methods have emerged as a powerful tool to study theories of physical phenomena, especially those of quantal systems. The framework of Lie algebras, initially introduced by - phus Lie in the last part of the 19th century, has been considerably expanded to include graded Lie algebras, in nite-dimensional Lie algebras, and other algebraic constructions. Algebras that were originally introduced to describe certainpropertiesofaphysicalsystem,inparticularbehaviorunderrotations and translations, have now taken center stage in the construction of physical theories. This book contains a set of notes from lectures given at Yale Univ- sity and other universities and laboratories in the last 20 years. The notes are intended to provide an introduction to Lie algebras at the level of a one-semester graduate course in physics. Lie algebras have been particularly useful in spectroscopy, where they were introduced by Eugene Wigner and Giulio Racah. Racahs lectures were given at Princeton University in 1951 (Group Theory and Spectroscopy) and they provided the impetus for the initial applications in atomic and nuclear physics. In the intervening years, many other applications have been made. This book contains a brief account of some of these applications to the ?elds of molecular, atomic, nuclear, and particle physics. The application of Lie algebraic methods in Physics is so wide that often students are overwhelmed by the sheer amount of material to absorb.

Arvustused

From the reviews:









"Iachello has written a pedagogical and straightforward presentation of Lie algebras and some applications to bosonic systems encountered in molecular, atomic, nuclear and particle physics. The book should be of interest to graduate students and researchers in physics, although mathematicians and chemists should find it useful as well. It is a great text to accompany a course on Lie algebras and their physical applications." (Marc de Montigny, Mathematical Reviews, Issue, 2007 i)



"This book a practical introduction to important facts concerning Lie algebras that continuously appear in physical problems, and written by one of the leading experts in the field. the book will certainly be of great use for students or specialists that want to refresh their knowledge on Lie algebras applied to physics. an excellent reference for those interested in acquiring practical experience in the application and techniques of Lie algebras to physics, and leaving the embarrassing theoretical presentations aside." (Rutwig Campoamor-Stursberg, Zentralblatt MATH, Vol. 1156, 2009)

Basic Concepts.- Semisimple Lie Algebras.- Lie Groups.- Irreducible Bases (Representations).- Casimir Operators and Their Eigenvalues.- Tensor Operators.- Boson Realizations.- Fermion Realizations.- Differential Realizations.- Matrix Realizations.- Spectrum Generating Algebras and Dynamic Symmetries.- Degeneracy Algebras and Dynamical Algebras.