Muutke küpsiste eelistusi

E-raamat: Lignocellulosic Polymer Composites: Processing, Characterization, and Properties

Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 243,23 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Chemists, materials scientists, and scientists and engineers in fields that use composites discuss the processing, characterization, and properties of composites that are made with lignocellulose polymers rather than polymers derived from petroleum. Their topics include interfacial adhesion in polymer composites reinforced with natural fiber, typical Brazilian lignocellulosic natural fibers as reinforcement of thermosetting and thermoplastic matrices, agricultural residual fibers as potential reinforcement elements for biocomposites, cellulose composites for construction applications, and cellulose-based polymers for packaging applications. Annotation ©2015 Ringgold, Inc., Portland, OR (protoview.com)

The book presents emerging economic and environmentally friendly lignocellulosic polymer composites materials that are free from side effects studied in the traditional synthetic materials. This book brings together panels of highly-accomplished leading experts in the field of lignocellulosic polymers & composites from academia, government, as well as research institutions across the globe and encompasses basic studies including preparation, characterization, properties and theory of polymers along with applications addressing new emerging topics of novel issues.

  • Provide basic information and clear understanding of the present state and the growing utility of lignocellulosic materials from different natural resources
  • Includes contributions from world-renowned experts on lignocellulosic polymer composites and discusses the combination of different kinds of lignocellulosic materials from natural resources
  • Discusses the fundamental properties and applications of lignocellulosic polymers in comparison to traditional synthetic materials
  • Explores various processing/ mechanical/ physic-chemical aspects of lignocellulosic polymer composites
Preface xvii
Part I LIGNOCELLULOSIC NATURAL POLYMERS BASED COMPOSITES
1 Lignocellulosic Polymer Composites: A Brief Overview
3(14)
Manju Kumari Thakur
Aswinder Kumar Rana
Vijay Kumar Thakur
1.1 Introduction
3(1)
1.2 Lignocellulosic Polymers: Source, Classification and Processing
4(4)
1.3 Lignocellulosic Natural Fibers: Structure, Chemical Composition and Properties
8(2)
1.4 Lignocellulosic Polymer Composites: Classification and Applications
10(3)
1.5 Conclusions
13(4)
References
13(4)
2 Interfacial Adhesion in Natural Fiber-Reinforced Polymer Composites
17(24)
E. Petinakis
L. Yu
G. Simon
X. Dai
Z. Chen
K. Dean
2.1 Introduction
17(1)
2.2 PLA-Based Wood-Flour Composites
18(2)
2.3 Optimizing Interfacial Adhesion in Wood-Polymer Composites
20(10)
2.3.1 Chemical Modification
21(6)
2.3.2 Physical Modification
27(3)
2.4 Evaluation of Interfacial Properties
30(4)
2.4.1 Microscopic Characterisation
31(1)
2.4.1.1 Scanning Electron Microscopy
31(1)
2.4.1.2 Atomic Force Microscopy
32(1)
2.4.2 Spectroscopic Techniques
33(1)
2.4.2.1 Acoustic Emission Spectroscopy (AES)
33(1)
2.4.3 Other Techniques
34(1)
2.5 Conclusions
34(7)
References
35(6)
3 Research on Cellulose-Based Polymer Composites in Southeast Asia
41(22)
Riza Wirawan
S.M. Sapuan
3.1 Introduction
42(2)
3.2 Sugar Palm (Arenga pinnata)
44(2)
3.3 Oil Palm (Elaeis Guineensis)
46(3)
3.4 Durian (Durio Zibethinus)
49(2)
3.5 Water Hyacinth (Eichhornia Crassipes)
51(6)
3.6 Summary
57(6)
References
58(5)
4 Hybrid Vegetable/Glass Fiber Composites
63(20)
Sandro C. Amico
Jose R. M. D'Almeida
Laura H. de Carvalho
Ma Odila H. Cioffi
4.1 Introduction
63(4)
4.1.1 The Hybrid Concept
65(2)
4.2 Vegetable Fiber/Glass Fiber Thermoplastic Composites
67(2)
4.3 Intra-Laminate Vegetable Fiber/glass Fiber Thermoset Composites
69(2)
4.4 Inter-Laminate Vegetable Fiber/glass Fiber Thermoset Composites
71(4)
4.5 Concluding Remarks
75(8)
Acknowledgement
76(1)
References
76(7)
5 Flax-Based Reinforcement Requirements for Obtaining Structural and Complex Shape Lignocellulosic Polymer Composite Parts
83(20)
Pierre Ouagne
Damien Soulat
5.1 Introduction
84(2)
5.2 Experimental Procedures
86(4)
5.2.1 Flax Tow Testing
86(1)
5.2.2 Flax Fabric Testing
86(1)
5.2.2.1 Biaxial Tensile Test
87(1)
5.2.3 Sheet Forming Device for Dry Textile Reinforcement
87(3)
5.3 Results and Discussion
90(7)
5.3.1 Tensile Behavior of Reinforcement Components: Flax Tow Scale
90(1)
5.3.1.1 Flax Tow Tensile Behavior
90(1)
5.3.1.2 Effect of Gauge Length on Tensile Properties
91(1)
5.3.1.3 Evolution of Failure Behavior
91(3)
5.3.2 Tensile Behavior of Reinforcement Components: Scale of Fabric
94(1)
5.3.3 Global Preform Analysis
94(1)
5.3.4 Analysis of Tensile Behavior of Tows During Forming
95(2)
5.4 Discussions
97(1)
5.5 Conclusions
98(5)
References
98(5)
6 Typical Brazilian Lignocellulosic Natural Fibers as Reinforcement of Thermosetting and Thermoplastics Matrices
103(22)
Patricia C. Mileo
Rosineide M. Leao
Sandra M. Luz
George J. M. Rocha
Adilson R. Goncalves
6.1 Introduction
104(1)
6.2 Experimental
105(5)
6.2.1 Preparation of cellulose and lignin from sugarcane bagasse
106(1)
6.2.2 Surface Treatment for Coconut Fibers
106(1)
6.2.3 Chemical Characterization of Fibers and Lignin
106(1)
6.2.3.1 Carbohydrates and Lignin Determination
106(1)
6.2.3.2 Determination of Ashes Content in Lignin
107(1)
6.2.3.3 Elemental Analysis of Lignin
107(1)
6.2.3.4 Total Acid Determination in Lignin
107(1)
6.2.3.5 Total Hydroxyls in Lignin
107(1)
6.2.3.6 Phenolic Hydroxyls in Lignin
107(1)
6.2.3.7 Determination of Carbonyl Groups in Lignin
108(1)
6.2.3.8 Analysis of the Molecular Weight Distribution of Lignin
108(1)
6.2.4 Infrared Spectroscopy (FTIR) Applied to Fibers and Lignin
108(1)
6.2.5 Preparation of Thermosetting and Thermoplastic Composites Reinforced with Natural Fibers
108(1)
6.2.6 Scanning Electron Microscopy (SEM)
109(1)
6.2.7 Thermogravimetric Analysis (TGA)
109(1)
6.2.8 Differential Scanning Calorimetry (DSC) Characterization
109(1)
6.3 Results and Discussion
110(12)
6.3.1 Chemical Composition and Characterization of Sugarcane Bagasse and Coconut Fibers
110(1)
6.3.2 Chemical Characterization of Lignin Extracted from Sugarcane Bagasse
111(1)
6.3.3 Modification of Coconut Fibers by Chemical Treatment
112(1)
6.3.4 Fourier Transform Infrared Spectrometry Applied to Coconut Fibers
113(1)
6.3.5 Composites with Thermoplastic and Thermosetting as Matrices
113(1)
6.3.5.1 Coconut Fibers
113(1)
6.3.6 Morphological Characterization for Composites Reinforced with Cellulose and Lignin from Sugarcane Bagasse and Coconut Fibers
114(3)
6.3.7 Thermogravimetric Analysis for Composites and Fibers
117(3)
6.3.8 Differential Scanning Calorimetry Studies for Composites and Fibers
120(2)
6.4 Conclusions
122(3)
Acknowledgements
123(1)
References
123(2)
7 Cellulose-Based Starch Composites: Structure and Properties
125(22)
Carmen-Alice Teaca
Ruxanda Bodirlau
Iuliana Spiridon
7.1 Introduction
125(1)
7.2 Starch and Cellulose Biobased Polymers for Composite Formulations
126(1)
7.3 Chemical Modification of Starch
127(2)
7.4 Cellulose-Based Starch Composites
129(10)
7.4.1 Obtainment
129(1)
7.4.1.1 Preparation of Starch Microparticles (StM) and Chemically Modified Starch Microparticles (CStM)
129(1)
7.4.1.2 Determination of the Molar Degree of Substitution of CMSt
130(1)
7.4.1.3 Preparation of CMSt/St/cellulose Filler Composite Films
131(2)
7.4.2 Characterization of Starch Polymer Matrix
133(1)
7.4.2.1 FTIR Spectroscopy Investigation
133(1)
7.4.2.2 X-ray Diffraction Analysis
134(2)
7.4.3 Properties Investigation
136(1)
7.4.3.1 Opacity Measurements
136(1)
7.4.3.2 Water Sorption Properties
137(1)
7.4.3.3 Mechanical Properties
138(1)
7.4.3.3 Thermal Properties
139(1)
7.5 Conclusions/Perspectives
139(8)
References
140(7)
8 Spectroscopy Analysis and Applications of Rice Husk and Gluten Husk Using Computational Chemistry
147(28)
Norma-Aurea Rangel-Vazquez
Virginia Hernandez-Montoya
Adrian Bonilla-Petriciolet
8.1 Introduction
148(12)
8.1.1 Computational Chemistry
148(1)
8.1.1.1 Molecular Mechanics Methods
149(1)
8.1.1.2 Semi-Empirical Methods
150(3)
8.1.2 Lignocellulosic Materials
153(1)
8.1.2.1 Rice Husk
154(1)
8.1.2.2 Wheat Gluten Husk
155(3)
8.1.3 Benzophenone
158(1)
8.1.4 Glibenclamide
159(1)
8.1.4.1 Mechanism of Action
159(1)
8.1.4.2 Medical Uses
160(1)
8.2 Methodology
160(1)
8.2.1 Geometry Optimization
160(1)
8.2.2 FTIR
160(1)
8.2.3 Electrostatic Potential
160(1)
8.3 Results and Discussions
161(11)
8.3.1 Geometry Optimization
161(1)
8.3.2 FTIR Analysis
161(2)
8.3.3 Electrostatic Potential
163(1)
8.3.4 Absorption of Benzophenone
164(1)
8.3.4.1 Geometry Optimization
164(1)
8.3.4.2 FTIR
164(4)
8.3.4.3 Electrostatic Potential
168(1)
8.3.5 Absorption of Glibenclamide
169(1)
8.3.5.1 Geometry Optimization
169(1)
8.3.5.2 FTIR
169(3)
8.3.5.3 Electrostatic Potential
172(1)
8.4 Conclusions
172(3)
References
172(3)
9 Oil Palm Fiber Polymer Composites: Processing, Characterization and Properties
175(38)
S. Shinoj
R. Visvanathan
9.1 Introduction
176(1)
9.2 Oil Palm Fiber
177(7)
9.2.1 Extraction
177(1)
9.2.2 Morphology and Properties
178(3)
9.2.3 Surface Treatments
181(3)
9.3 Oil Palm Fiber Composites
184(24)
9.3.1 Oil Palm Fiber-Natural Rubber Composites
185(1)
9.3.1.1 Mechanical Properties
185(2)
9.3.1.2 Water Absorption Characteristics
187(1)
9.3.1.3 Thermal Properties
187(1)
9.3.1.4 Electrical Properties
187(2)
9.3.2 Oil Palm Fiber-Polypropylene Composites
189(1)
9.3.2.1 Mechanical Properties
189(2)
9.3.2.2 Water Absorption Characteristics
191(1)
9.3.2.3 Degradation/weathering
192(1)
9.3.3 Oil Palm Fiber-Polyurethane Composites
192(1)
9.3.3.1 Mechanical Properties
192(1)
9.3.3.2 Water Absorption Characteristics
193(1)
9.3.3.3 Degradation/weathering
194(1)
9.3.4 Oil Palm Fiber-Polyvinyl Chloride Composites
194(1)
9.3.4.1 Mechanical Properties
194(1)
9.3.4.2 Thermal Properties
195(1)
9.3.5 Oil Palm Fiber-Polyester Composites
196(1)
9.3.5.1 Physical Properties
196(1)
9.3.5.2 Mechanical Properties
196(1)
9.3.5.3 Water Absorption Characteristics
197(1)
9.3.5.4 Degradation/weathering
198(1)
9.3.6 Oil Palm Fiber-Phenol Formaldehyde Composites
198(1)
9.3.6.1 Physical Properties
199(1)
9.3.6.2 Mechanical Properties
199(1)
9.3.6.3 Water Absorption Characteristics
200(1)
9.3.6.4 Thermal Properties
201(1)
9.3.6.5 Degradation/weathering
201(1)
9.3.7 Oil Palm Fiber-Polystyrene Composites
202(1)
9.3.7.1 Mechanical Properties
202(1)
9.3.8 Oil Palm Fiber-Epoxy Composites
202(1)
9.3.8.1 Mechanical Properties
203(1)
9.3.9 Oil Palm Fiber-LLDPE Composites
203(1)
9.3.9.1 Physical Properties
204(1)
9.3.9.2 Electrical Properties
205(1)
9.3.9.3 Mechanical Properties
205(2)
9.3.9.4 Thermal Properties
207(1)
9.4 Conclusions
208(5)
References
208(5)
10 Lignocellulosic Polymer Composites: Processing, Characterization and Properties
213(20)
Bryan L. S. Sipiao
Lais Souza Reis
Rayane de Lima Moura Paiva
Maria Rosa Capri
Daniella R. Mulinari
10.1 Introduction
213(1)
10.2 Palm Fibers
214(6)
10.2.1 Effect of Modification on Mechanical Properties of Palm Fiber Composites
215(1)
10.2.2 Alkali Treatment and Coupling Agent
216(4)
10.3 Pineapple Fibers
220(13)
10.3.1 Alkali Treatment
221(2)
10.3.2 Acid Hydrolysis
223(4)
Acknowledgements
227(1)
References
227(6)
Part II CHEMICAL MODIFICATION OF CELLULOSIC MATERIALS FOR ADVANCED COMPOSITES
11 Agro-Residual Fibers as Potential Reinforcement Elements for Biocomposites
233(38)
Nazire Deniz Yilmaz
11.1 Introduction
233(2)
11.2 Fiber Sources
235(4)
11.2.1 Wheat Straw
235(1)
11.2.2 Corn Stalk, Cob and Husks
235(1)
11.2.3 Okra Stem
236(1)
11.2.4 Banana Stem, Leaf, Bunch
236(1)
11.2.5 Reed Stalk
237(1)
11.2.6 Nettle
237(1)
11.2.7 Pineapple Leaf
238(1)
11.2.8 Sugarcane
238(1)
11.2.9 Oil Palm Bunch
238(1)
11.2.10 Coconut Husk
239(1)
11.3 Fiber Extraction methods
239(7)
11.3.1 Biological Fiber Extraction Methods
240(1)
11.3.2 Chemical Fiber Separation Methods
241(1)
11.3.3 Mechanical Fiber Separation Methods
241(5)
11.4 Classification of Plant Fibers
246(1)
11.5 Properties of Plant Fibers
247(2)
11.5.1 Chemical Properties of Plant Fibers
247(1)
11.5.1.1 Cellulose
247(1)
11.5.1.2 Hemicellulose
248(1)
11.5.1.3 Lignin
248(1)
11.5.1.4 Pectin
249(1)
11.5.1.5 Waxes
249(1)
11.6 Properties of Agro-Based Fibers
249(9)
11.6.1 Physical Properties
249(2)
11.6.2 Mechanical Properties
251(1)
11.6.3 Some Important Features of Plant Fibers
252(1)
11.6.3.1 Insulation
252(1)
11.6.3.2 Moisture Absorption
252(2)
11.6.3.3 Dimensional stability
254(3)
11.6.3.4 Photo Degradation
257(1)
11.6.3.5 Microbial Resistance
257(1)
11.6.3.6 Variability
257(1)
11.6.3.7 Reactivity
258(1)
11.7 Modification of Agro-Based Fibers
258(8)
11.7.1 Physical Treatments
258(2)
11.7.2 Chemical Treatments
260(1)
11.7.2.1 Alkalization
260(3)
11.7.2.2 Acetylation
263(1)
11.7.2.3 Silane Treatment
263(1)
11.7.2.4 Bleaching
263(1)
11.7.2.5 Enzyme Treatment
264(1)
11.7.2.6 Sulfonation
265(1)
11.7.2.7 Graft Copolymerization
265(1)
11.8 Conclusion
266(5)
References
266(5)
12 Surface Modification Strategies for Cellulosic Fibers
271(10)
Inderdeep Singh
Pramendra Kumar Bajpai
12.1 Introduction
271(2)
12.2 Special Treatments during Primary Processing
273(4)
12.2.1 Microwave Curing of Biocomposites
274(1)
12.2.2 Chemical Treatments of Fibers During Primary Processing of Biocomposites
274(1)
12.2.2.1 Alkaline Treatment
275(1)
12.2.2.2 Silane Treatment
276(1)
12.3 Other Chemical Treatments
277(1)
12.4 Conclusions
278(3)
References
279(2)
13 Effect of Chemical Functionalization on Functional Properties of Cellulosic Fiber-Reinforced Polymer Composites
281(20)
Ashvinder Kumar Rana
Amar Singh Singha
Manju Kumari Thakur
Vijay Kumar Thakur
13.1 Introduction
282(1)
13.2 Chemical Functionalization of Cellulosic Fibers
283(1)
13.2.1 Alkali Treatment
283(1)
13.2.2 Benzoylation
283(1)
13.2.3 Composites Fabrication
283(1)
13.3 Results and Discussion
284(13)
13.3.1 Mechanical Properties
284(1)
13.3.1.1 Tensile Strength
284(2)
13.3.1.2 Compressive Strength
286(2)
13.3.1.3 Flexural Strength
288(1)
13.3.2 FTIR Analysis
288(1)
13.3.3 SEM Analysis
289(1)
13.3.4 Thermogravimetric Analysis
290(1)
13.3.5 Evaluation of Physico-Chemical Properties
290(1)
13.3.5.1 Water Absorption
290(2)
13.3.5.2 Chemical Resistance
292(1)
13.3.5.3 Moisture Absorption
293(2)
13.3.6 Limiting Oxygen Index (LOI) Test
295(2)
13.4 Conclusion
297(4)
References
297(4)
14 Chemical Modification and Properties of Cellulose-Based Polymer Composites
301(26)
Md. Saiful Islam
Mahbub Hasan
Mansor Hj. Ahmad Ayob
14.1 Introduction
302(1)
14.2 Alkali Treatment
303(3)
14.3 Benzene Diazonium Salt Treatment
306(4)
14.4 o-hydroxybenzene Diazonium Salt Treatment
310(3)
14.5 Succinic Anhydride Treatment
313(4)
14.6 Acrylonitrile Treatment
317(1)
14.7 Maleic Anhydride Treatment
318(1)
14.8 Nanoclay Treatment
318(2)
14.9 Some other Chemical Treatment with Natural Fibers
320(1)
14.9.1 Epoxides Treatment
320(1)
14.9.2 Alkyl Halide Treatment
320(1)
14.9.3 β- Propiolactone Treatments
320(1)
14.9.4 Cyclic Anhydride Treatments
321(1)
14.9.5 Oxidation of Natural Fiber
321(1)
14.10 Conclusions
321(6)
References
322(5)
Part III PHYSICO-CHEMICAL AND MECHANICAL BEHAVIOUR OF CELLULOSE/ POLYMER COMPOSITES
15 Weathering of Lignocellulosic Polymer Composites
327(42)
Asim Shahzad
D. H. Isaac
15.1 Introduction
328(1)
15.2 Wood and Plant Fibers
329(1)
15.3 UV Radiation
330(5)
15.3.1 Lignocellulosic Fibers
332(1)
15.3.2 Polymer Matrices
333(1)
15.3.3 Methods for Improving UV Resistance of LPCs
334(1)
15.4 Moisture
335(7)
15.4.1 Lignocellulosic Fibers
336(3)
15.4.2 Polymer Matrices
339(1)
15.4.3 Methods for Improving Moisture Resistance of LPCs
340(2)
15.5 Testing of Weathering Properties
342(3)
15.6 Studies on Weathering of LPCs
345(17)
15.6.1 Lignocellulosic Fibers
345(1)
15.6.2 Lignocellulosic Thermoplastic Composites
346(6)
15.6.2.1 Effects of Photostabilizers and Surface Treatments
352(7)
15.6.3 Lignocellulosic Thermoset Composites
359(1)
15.6.4 Lignocellulosic Biodegradable Polymer Composites
360(2)
15.7 Conclusions
362(7)
References
363(6)
16 Effect of Layering Pattern on the Physical, Mechanical and Acoustic Properties of Luffa/Coir Fiber-Reinforced Epoxy Novolac Hybrid Composites
369(16)
Sudhir Kumar Saw
Gautam Sarkhel
Arup Choudhury
16.1 Introduction
369(4)
16.2 Experimental
373(1)
16.2.1 Materials
373(1)
16.2.2 Synthesis of Epoxy Novolac Resin (ENR)
373(1)
16.2.3 Fabrication of Composite Materials via Hot-pressing
373(1)
16.3 Characterization of ENR-Based Luffa/Coir Hybrid Composites
374(2)
16.3.1 Dimensional Stability Test
374(1)
16.3.2 Mechanical Strength Analysis
375(1)
16.3.3 Sound Absorption Test
375(1)
16.3.4 Scanning Electron Microscopy (SEM)
375(1)
16.4 Results and Discussion
376(7)
16.4.1 Water Absorption Test
376(1)
16.4.2 Thickness Swelling Test
377(1)
16.4.3 Effect of Different Configurations on Mechanical Properties
378(2)
16.4.4 Sound Absorption Performances
380(1)
16.4.5 Study of Hybrid Composite Microstructure
381(2)
16.5 Conclusions
383(2)
Acknowledgements
383(1)
References
383(2)
17 Fracture Mechanism of Wood-Plastic Composites (WPCS): Observation and Analysis
385(32)
Fatemeh Alavi
Amir Hossein Behravesh
Majid Mirzaei
17.1 Introduction
385(11)
17.1.1 Fracture Behavior of Particulate Composites
386(1)
17.1.1.1 Particle Size, Volume Fraction, and Fillers Orientation
386(3)
17.1.1.2 Fillers & Polymers Characteristics
389(2)
17.1.1.3 Loading
391(1)
17.1.1.4 Temperature
391(2)
17.1.1.5 Interface
393(3)
17.2 Fracture Mechanism
396(2)
17.3 Toughness Characterization
398(2)
17.4 Fracture Observation
400(2)
17.5 Fracture Analysis
402(7)
17.5.1 Macroscale Modeling
402(1)
17.5.2 Multi-scale Modeling
403(1)
17.5.3 Cohesive Zone Model (CZM)
404(3)
17.5.4 Other Numerical Methods
407(1)
17.5.5 Inverse Method
408(1)
17.6 Conclusions
409(8)
References
410(7)
18 Mechanical Behavior of Biocomposites under Different Operating Environments
417(18)
Inderdeep Singh
Kishore Debnath
Akshay Dvivedi
18.1 Introduction
417(2)
18.2 Classification and Structure of Natural Fibers
419(2)
18.3 Moisture Absorption Behavior of Biocomposites
421(2)
18.4 Mechanical Characterization of Biocomposites in a Humid Environment
423(1)
18.5 Oil Absorption Behavior and Its Effects on Mechanical Properties of Biocomposites
424(1)
18.6 UV-Irradiation and Its Effects on Mechanical Properties of Biocomposites
425(1)
18.7 Mechanical Behavior of Biocomposites Subjected to Thermal Loading
426(2)
18.8 Biodegradation Behavior and Mechanical Characterization of Soil Buried Biocomposites
428(1)
18.9 Conclusions
429(6)
Part IV APPLICATIONS OF CELLULOSE/POLYMER COMPOSITES 19 Cellulose Composites for Construction Applications
435(116)
Catalina Gomez Hoyos and Analia Vazquez
19.1 Polymers Reinforced with Natural Fibers for Construction Applications
435(5)
19.1.1 Durability of Polymer-Reinforced with Natural Fibers
438(1)
19.1.2 Classification of Polymer Composites Reinforced with Natural Fibers
439(1)
19.2 Portland Cement Matrix Reinforced with Natural Fibers for Construction Applications
440(13)
19.2.1 Modifications on Cement Matrix to Increase Durability
441(1)
19.2.1.1 Pozzolanic Aditions
441(1)
19.2.1.2 Carbonation of Cement Matrix
442(1)
19.2.2 Modifications on Natural Fibers to Increase Durability of Cement Composites
443(2)
19.2.3 Application of Cement Composites Reinforced with Cellulosic Fibers
445(1)
19.2.4 Celllulose Micro and Nanofibers Used to Reinforce Cement Matrices
446(2)
References
448(5)
20 Jute: An Interesting Lignocellulosic Fiber for New Generation Applications
453(24)
Murshid Iman
Tarun K. Maji
20.1 Introduction
453(2)
20.2 Reinforcing Biofibers
455(10)
20.2.1 Chemical Constituents and Structural Aspects of Lignocellulosic Fiber
457(1)
20.2.2 Properties of Jute
458(2)
20.2.3 Cost Aspects, Availability and Sustainable Development
460(1)
20.2.4 Surface Treatments
461(1)
20.2.5 Processing
461(1)
20.2.5.1 Compression Molding
462(1)
20.2.5.2 Resin Transfer Molding
462(1)
20.2.5.3 Vacuum-Assisted Resin Transfer Molding (VARTM)
463(1)
20.2.5.4 Injection Molding
464(1)
20.2.5.5 Direct Long-Fiber Thermoplastic Molding (D-LFT)
464(1)
20.3 Biodegradable Polymers
465(1)
20.4 Jute-Reinforced Biocomposites
466(2)
20.5 Applications
468(1)
20.6 Concluding Remarks
468(9)
Acknowledgement
469(1)
References
469(8)
21 Cellulose-Based Polymers for Packaging Applications
477(22)
Behjat Tajeddin
21.1 Introduction
477(4)
21.1.1 Packaging Materials
479(1)
21.1.2 Plastics
479(1)
21.1.3 Problems of Plastics
480(1)
21.2 Cellulose as a Polymeric Biomaterial
481(9)
21.2.1 Cellulose Extraction
482(1)
21.2.2 Cellulosic Composites (Green Composites)
483(3)
21.2.3 Cellulose Derivatives Composites
486(1)
21.2.3.1 Esterification
486(1)
21.2.3.2 Etherification
487(1)
21.2.3.3 Regenerated Cellulose Fibers
488(1)
21.2.3.4 Bacterial Cellulose (BC)
489(1)
21.3 Cellulose as Coatings and Films Material
490(2)
21.3.1 Coatings
491(1)
21.3.2 Films
492(1)
21.4 Nanocellulose or Cellulose Nanocomposites
492(1)
21.5 Quality Control Tests
493(2)
21.6 Conclusions
495(4)
References
496(3)
22 Applications of Kenaf-Lignocellulosic Fiber in Polymer Blends
499(24)
Norshahida Sarifuddin
Hanafi Ismail
22.1 Introduction
499(1)
22.2 Natural Fibers
500(5)
22.3 Kenaf: Malaysian Cultivation
505(3)
22.4 Kenaf Fibers and Composites
508(1)
22.5 Kenaf Fiber Reinforced Low Density Polyethylene/Thermoplastic Sago Starch Blends
509(3)
22.6 The Effects of Kenaf Fiber Treatment on the Properties of LDPE/TPSS Blends
512(5)
22.7 Outlook and Future Trends
517(6)
Acknowledgement
517(1)
References
517(6)
23 Application of Natural Fiber as Reinforcement in Recycled Polypropylene Biocomposites
523(28)
Sanjay K Nayak
Gajendra Dixit
23.1 Introduction
523(10)
23.1.1 Natural Fibers -- An Introduction
525(1)
23.1.2 Chemical Composition of Natural Fiber
526(3)
23.1.3 Classification of Natural Fibers
529(1)
23.1.4 Surface Modification of Natural Fibers
530(1)
23.1.4.1 Alkali Treatment
530(1)
23.1.4.2 Silane Treatment (SiH4)
530(1)
23.1.4.3 Acetylation of Natural Fibers
531(1)
23.1.5 Properties of Natural Fibers
532(1)
23.2 Recycled Polypropylene (RPP) -- A matrix for Natural Fiber Composites
533(1)
23.3 Natural Fiber-Based Composites -- An Overview
534(11)
23.3.1 Sisal Fiber-Based Recycled Polypropylene (RPP) Composites
535(1)
23.3.1.1 Mechanical and Dynamic Mechanical Properties of Sisal RPP Composites
536(3)
23.3.1.2 Thermal Properties Sisal RPP Composites
539(2)
23.3.1.3 Weathering and Its Effect on Mechanical Properties of Sisal RPP Composites
541(2)
23.3.1.4 Fracture Analysis of RPP and its Composites
543(2)
23.4 Conclusion
545(6)
References
545(6)
Index 551
Vijay Kumar Thakur, Ph.D. is a staff scientist in the School of Mechanical and Materials Engineeringat Washington State University, U.S.A. He is editorial board member of several international journals including Advanced Chemistry Letters, Lignocelluloses, Drug Inventions Today (Elsevier), International Journal of Energy Engineering, Journal of Textile Science & Engineering (U.S.A). He also member of scientific bodies around the world. His former appointments include as a research scientist in Temasek Laboratories at Nanyang Technological University Singapore, visiting research fellow in the Department of Chemical and Materials Engineering at Lhu-Taiwan and post-doctorate in the Department of Materials Science and Engineering at Iowa State University, USA. In his academic career, he published more than 100 research articles, patent and conference proceedings in the field of polymers and materials science. He has published ten books and twenty-five book chapters on the advanced state-of-the-art of polymers and materials science with numerous publishers. He has extensive expertise in the synthesis of natural and synthetic polymers, nano-materials, nanocomposites, biocomposites, graft copolymers, high performance capacitors and electrochromic materials.