Preface |
|
xvii | |
|
Part I LIGNOCELLULOSIC NATURAL POLYMERS BASED COMPOSITES |
|
|
|
1 Lignocellulosic Polymer Composites: A Brief Overview |
|
|
3 | (14) |
|
|
|
|
|
3 | (1) |
|
1.2 Lignocellulosic Polymers: Source, Classification and Processing |
|
|
4 | (4) |
|
1.3 Lignocellulosic Natural Fibers: Structure, Chemical Composition and Properties |
|
|
8 | (2) |
|
1.4 Lignocellulosic Polymer Composites: Classification and Applications |
|
|
10 | (3) |
|
|
13 | (4) |
|
|
13 | (4) |
|
2 Interfacial Adhesion in Natural Fiber-Reinforced Polymer Composites |
|
|
17 | (24) |
|
|
|
|
|
|
|
|
17 | (1) |
|
2.2 PLA-Based Wood-Flour Composites |
|
|
18 | (2) |
|
2.3 Optimizing Interfacial Adhesion in Wood-Polymer Composites |
|
|
20 | (10) |
|
2.3.1 Chemical Modification |
|
|
21 | (6) |
|
2.3.2 Physical Modification |
|
|
27 | (3) |
|
2.4 Evaluation of Interfacial Properties |
|
|
30 | (4) |
|
2.4.1 Microscopic Characterisation |
|
|
31 | (1) |
|
2.4.1.1 Scanning Electron Microscopy |
|
|
31 | (1) |
|
2.4.1.2 Atomic Force Microscopy |
|
|
32 | (1) |
|
2.4.2 Spectroscopic Techniques |
|
|
33 | (1) |
|
2.4.2.1 Acoustic Emission Spectroscopy (AES) |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
34 | (7) |
|
|
35 | (6) |
|
3 Research on Cellulose-Based Polymer Composites in Southeast Asia |
|
|
41 | (22) |
|
|
|
|
42 | (2) |
|
3.2 Sugar Palm (Arenga pinnata) |
|
|
44 | (2) |
|
3.3 Oil Palm (Elaeis Guineensis) |
|
|
46 | (3) |
|
3.4 Durian (Durio Zibethinus) |
|
|
49 | (2) |
|
3.5 Water Hyacinth (Eichhornia Crassipes) |
|
|
51 | (6) |
|
|
57 | (6) |
|
|
58 | (5) |
|
4 Hybrid Vegetable/Glass Fiber Composites |
|
|
63 | (20) |
|
|
|
|
|
|
63 | (4) |
|
|
65 | (2) |
|
4.2 Vegetable Fiber/Glass Fiber Thermoplastic Composites |
|
|
67 | (2) |
|
4.3 Intra-Laminate Vegetable Fiber/glass Fiber Thermoset Composites |
|
|
69 | (2) |
|
4.4 Inter-Laminate Vegetable Fiber/glass Fiber Thermoset Composites |
|
|
71 | (4) |
|
|
75 | (8) |
|
|
76 | (1) |
|
|
76 | (7) |
|
5 Flax-Based Reinforcement Requirements for Obtaining Structural and Complex Shape Lignocellulosic Polymer Composite Parts |
|
|
83 | (20) |
|
|
|
|
84 | (2) |
|
5.2 Experimental Procedures |
|
|
86 | (4) |
|
|
86 | (1) |
|
5.2.2 Flax Fabric Testing |
|
|
86 | (1) |
|
5.2.2.1 Biaxial Tensile Test |
|
|
87 | (1) |
|
5.2.3 Sheet Forming Device for Dry Textile Reinforcement |
|
|
87 | (3) |
|
5.3 Results and Discussion |
|
|
90 | (7) |
|
5.3.1 Tensile Behavior of Reinforcement Components: Flax Tow Scale |
|
|
90 | (1) |
|
5.3.1.1 Flax Tow Tensile Behavior |
|
|
90 | (1) |
|
5.3.1.2 Effect of Gauge Length on Tensile Properties |
|
|
91 | (1) |
|
5.3.1.3 Evolution of Failure Behavior |
|
|
91 | (3) |
|
5.3.2 Tensile Behavior of Reinforcement Components: Scale of Fabric |
|
|
94 | (1) |
|
5.3.3 Global Preform Analysis |
|
|
94 | (1) |
|
5.3.4 Analysis of Tensile Behavior of Tows During Forming |
|
|
95 | (2) |
|
|
97 | (1) |
|
|
98 | (5) |
|
|
98 | (5) |
|
6 Typical Brazilian Lignocellulosic Natural Fibers as Reinforcement of Thermosetting and Thermoplastics Matrices |
|
|
103 | (22) |
|
|
|
|
|
|
|
104 | (1) |
|
|
105 | (5) |
|
6.2.1 Preparation of cellulose and lignin from sugarcane bagasse |
|
|
106 | (1) |
|
6.2.2 Surface Treatment for Coconut Fibers |
|
|
106 | (1) |
|
6.2.3 Chemical Characterization of Fibers and Lignin |
|
|
106 | (1) |
|
6.2.3.1 Carbohydrates and Lignin Determination |
|
|
106 | (1) |
|
6.2.3.2 Determination of Ashes Content in Lignin |
|
|
107 | (1) |
|
6.2.3.3 Elemental Analysis of Lignin |
|
|
107 | (1) |
|
6.2.3.4 Total Acid Determination in Lignin |
|
|
107 | (1) |
|
6.2.3.5 Total Hydroxyls in Lignin |
|
|
107 | (1) |
|
6.2.3.6 Phenolic Hydroxyls in Lignin |
|
|
107 | (1) |
|
6.2.3.7 Determination of Carbonyl Groups in Lignin |
|
|
108 | (1) |
|
6.2.3.8 Analysis of the Molecular Weight Distribution of Lignin |
|
|
108 | (1) |
|
6.2.4 Infrared Spectroscopy (FTIR) Applied to Fibers and Lignin |
|
|
108 | (1) |
|
6.2.5 Preparation of Thermosetting and Thermoplastic Composites Reinforced with Natural Fibers |
|
|
108 | (1) |
|
6.2.6 Scanning Electron Microscopy (SEM) |
|
|
109 | (1) |
|
6.2.7 Thermogravimetric Analysis (TGA) |
|
|
109 | (1) |
|
6.2.8 Differential Scanning Calorimetry (DSC) Characterization |
|
|
109 | (1) |
|
6.3 Results and Discussion |
|
|
110 | (12) |
|
6.3.1 Chemical Composition and Characterization of Sugarcane Bagasse and Coconut Fibers |
|
|
110 | (1) |
|
6.3.2 Chemical Characterization of Lignin Extracted from Sugarcane Bagasse |
|
|
111 | (1) |
|
6.3.3 Modification of Coconut Fibers by Chemical Treatment |
|
|
112 | (1) |
|
6.3.4 Fourier Transform Infrared Spectrometry Applied to Coconut Fibers |
|
|
113 | (1) |
|
6.3.5 Composites with Thermoplastic and Thermosetting as Matrices |
|
|
113 | (1) |
|
|
113 | (1) |
|
6.3.6 Morphological Characterization for Composites Reinforced with Cellulose and Lignin from Sugarcane Bagasse and Coconut Fibers |
|
|
114 | (3) |
|
6.3.7 Thermogravimetric Analysis for Composites and Fibers |
|
|
117 | (3) |
|
6.3.8 Differential Scanning Calorimetry Studies for Composites and Fibers |
|
|
120 | (2) |
|
|
122 | (3) |
|
|
123 | (1) |
|
|
123 | (2) |
|
7 Cellulose-Based Starch Composites: Structure and Properties |
|
|
125 | (22) |
|
|
|
|
|
125 | (1) |
|
7.2 Starch and Cellulose Biobased Polymers for Composite Formulations |
|
|
126 | (1) |
|
7.3 Chemical Modification of Starch |
|
|
127 | (2) |
|
7.4 Cellulose-Based Starch Composites |
|
|
129 | (10) |
|
|
129 | (1) |
|
7.4.1.1 Preparation of Starch Microparticles (StM) and Chemically Modified Starch Microparticles (CStM) |
|
|
129 | (1) |
|
7.4.1.2 Determination of the Molar Degree of Substitution of CMSt |
|
|
130 | (1) |
|
7.4.1.3 Preparation of CMSt/St/cellulose Filler Composite Films |
|
|
131 | (2) |
|
7.4.2 Characterization of Starch Polymer Matrix |
|
|
133 | (1) |
|
7.4.2.1 FTIR Spectroscopy Investigation |
|
|
133 | (1) |
|
7.4.2.2 X-ray Diffraction Analysis |
|
|
134 | (2) |
|
7.4.3 Properties Investigation |
|
|
136 | (1) |
|
7.4.3.1 Opacity Measurements |
|
|
136 | (1) |
|
7.4.3.2 Water Sorption Properties |
|
|
137 | (1) |
|
7.4.3.3 Mechanical Properties |
|
|
138 | (1) |
|
7.4.3.3 Thermal Properties |
|
|
139 | (1) |
|
7.5 Conclusions/Perspectives |
|
|
139 | (8) |
|
|
140 | (7) |
|
8 Spectroscopy Analysis and Applications of Rice Husk and Gluten Husk Using Computational Chemistry |
|
|
147 | (28) |
|
Norma-Aurea Rangel-Vazquez |
|
|
Virginia Hernandez-Montoya |
|
|
Adrian Bonilla-Petriciolet |
|
|
|
148 | (12) |
|
8.1.1 Computational Chemistry |
|
|
148 | (1) |
|
8.1.1.1 Molecular Mechanics Methods |
|
|
149 | (1) |
|
8.1.1.2 Semi-Empirical Methods |
|
|
150 | (3) |
|
8.1.2 Lignocellulosic Materials |
|
|
153 | (1) |
|
|
154 | (1) |
|
8.1.2.2 Wheat Gluten Husk |
|
|
155 | (3) |
|
|
158 | (1) |
|
|
159 | (1) |
|
8.1.4.1 Mechanism of Action |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
160 | (1) |
|
8.2.1 Geometry Optimization |
|
|
160 | (1) |
|
|
160 | (1) |
|
8.2.3 Electrostatic Potential |
|
|
160 | (1) |
|
8.3 Results and Discussions |
|
|
161 | (11) |
|
8.3.1 Geometry Optimization |
|
|
161 | (1) |
|
|
161 | (2) |
|
8.3.3 Electrostatic Potential |
|
|
163 | (1) |
|
8.3.4 Absorption of Benzophenone |
|
|
164 | (1) |
|
8.3.4.1 Geometry Optimization |
|
|
164 | (1) |
|
|
164 | (4) |
|
8.3.4.3 Electrostatic Potential |
|
|
168 | (1) |
|
8.3.5 Absorption of Glibenclamide |
|
|
169 | (1) |
|
8.3.5.1 Geometry Optimization |
|
|
169 | (1) |
|
|
169 | (3) |
|
8.3.5.3 Electrostatic Potential |
|
|
172 | (1) |
|
|
172 | (3) |
|
|
172 | (3) |
|
9 Oil Palm Fiber Polymer Composites: Processing, Characterization and Properties |
|
|
175 | (38) |
|
|
|
|
176 | (1) |
|
|
177 | (7) |
|
|
177 | (1) |
|
9.2.2 Morphology and Properties |
|
|
178 | (3) |
|
|
181 | (3) |
|
9.3 Oil Palm Fiber Composites |
|
|
184 | (24) |
|
9.3.1 Oil Palm Fiber-Natural Rubber Composites |
|
|
185 | (1) |
|
9.3.1.1 Mechanical Properties |
|
|
185 | (2) |
|
9.3.1.2 Water Absorption Characteristics |
|
|
187 | (1) |
|
9.3.1.3 Thermal Properties |
|
|
187 | (1) |
|
9.3.1.4 Electrical Properties |
|
|
187 | (2) |
|
9.3.2 Oil Palm Fiber-Polypropylene Composites |
|
|
189 | (1) |
|
9.3.2.1 Mechanical Properties |
|
|
189 | (2) |
|
9.3.2.2 Water Absorption Characteristics |
|
|
191 | (1) |
|
9.3.2.3 Degradation/weathering |
|
|
192 | (1) |
|
9.3.3 Oil Palm Fiber-Polyurethane Composites |
|
|
192 | (1) |
|
9.3.3.1 Mechanical Properties |
|
|
192 | (1) |
|
9.3.3.2 Water Absorption Characteristics |
|
|
193 | (1) |
|
9.3.3.3 Degradation/weathering |
|
|
194 | (1) |
|
9.3.4 Oil Palm Fiber-Polyvinyl Chloride Composites |
|
|
194 | (1) |
|
9.3.4.1 Mechanical Properties |
|
|
194 | (1) |
|
9.3.4.2 Thermal Properties |
|
|
195 | (1) |
|
9.3.5 Oil Palm Fiber-Polyester Composites |
|
|
196 | (1) |
|
9.3.5.1 Physical Properties |
|
|
196 | (1) |
|
9.3.5.2 Mechanical Properties |
|
|
196 | (1) |
|
9.3.5.3 Water Absorption Characteristics |
|
|
197 | (1) |
|
9.3.5.4 Degradation/weathering |
|
|
198 | (1) |
|
9.3.6 Oil Palm Fiber-Phenol Formaldehyde Composites |
|
|
198 | (1) |
|
9.3.6.1 Physical Properties |
|
|
199 | (1) |
|
9.3.6.2 Mechanical Properties |
|
|
199 | (1) |
|
9.3.6.3 Water Absorption Characteristics |
|
|
200 | (1) |
|
9.3.6.4 Thermal Properties |
|
|
201 | (1) |
|
9.3.6.5 Degradation/weathering |
|
|
201 | (1) |
|
9.3.7 Oil Palm Fiber-Polystyrene Composites |
|
|
202 | (1) |
|
9.3.7.1 Mechanical Properties |
|
|
202 | (1) |
|
9.3.8 Oil Palm Fiber-Epoxy Composites |
|
|
202 | (1) |
|
9.3.8.1 Mechanical Properties |
|
|
203 | (1) |
|
9.3.9 Oil Palm Fiber-LLDPE Composites |
|
|
203 | (1) |
|
9.3.9.1 Physical Properties |
|
|
204 | (1) |
|
9.3.9.2 Electrical Properties |
|
|
205 | (1) |
|
9.3.9.3 Mechanical Properties |
|
|
205 | (2) |
|
9.3.9.4 Thermal Properties |
|
|
207 | (1) |
|
|
208 | (5) |
|
|
208 | (5) |
|
10 Lignocellulosic Polymer Composites: Processing, Characterization and Properties |
|
|
213 | (20) |
|
|
|
Rayane de Lima Moura Paiva |
|
|
|
|
|
213 | (1) |
|
|
214 | (6) |
|
10.2.1 Effect of Modification on Mechanical Properties of Palm Fiber Composites |
|
|
215 | (1) |
|
10.2.2 Alkali Treatment and Coupling Agent |
|
|
216 | (4) |
|
|
220 | (13) |
|
|
221 | (2) |
|
|
223 | (4) |
|
|
227 | (1) |
|
|
227 | (6) |
|
Part II CHEMICAL MODIFICATION OF CELLULOSIC MATERIALS FOR ADVANCED COMPOSITES |
|
|
|
11 Agro-Residual Fibers as Potential Reinforcement Elements for Biocomposites |
|
|
233 | (38) |
|
|
|
233 | (2) |
|
|
235 | (4) |
|
|
235 | (1) |
|
11.2.2 Corn Stalk, Cob and Husks |
|
|
235 | (1) |
|
|
236 | (1) |
|
11.2.4 Banana Stem, Leaf, Bunch |
|
|
236 | (1) |
|
|
237 | (1) |
|
|
237 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
238 | (1) |
|
|
239 | (1) |
|
11.3 Fiber Extraction methods |
|
|
239 | (7) |
|
11.3.1 Biological Fiber Extraction Methods |
|
|
240 | (1) |
|
11.3.2 Chemical Fiber Separation Methods |
|
|
241 | (1) |
|
11.3.3 Mechanical Fiber Separation Methods |
|
|
241 | (5) |
|
11.4 Classification of Plant Fibers |
|
|
246 | (1) |
|
11.5 Properties of Plant Fibers |
|
|
247 | (2) |
|
11.5.1 Chemical Properties of Plant Fibers |
|
|
247 | (1) |
|
|
247 | (1) |
|
|
248 | (1) |
|
|
248 | (1) |
|
|
249 | (1) |
|
|
249 | (1) |
|
11.6 Properties of Agro-Based Fibers |
|
|
249 | (9) |
|
11.6.1 Physical Properties |
|
|
249 | (2) |
|
11.6.2 Mechanical Properties |
|
|
251 | (1) |
|
11.6.3 Some Important Features of Plant Fibers |
|
|
252 | (1) |
|
|
252 | (1) |
|
11.6.3.2 Moisture Absorption |
|
|
252 | (2) |
|
11.6.3.3 Dimensional stability |
|
|
254 | (3) |
|
11.6.3.4 Photo Degradation |
|
|
257 | (1) |
|
11.6.3.5 Microbial Resistance |
|
|
257 | (1) |
|
|
257 | (1) |
|
|
258 | (1) |
|
11.7 Modification of Agro-Based Fibers |
|
|
258 | (8) |
|
11.7.1 Physical Treatments |
|
|
258 | (2) |
|
11.7.2 Chemical Treatments |
|
|
260 | (1) |
|
|
260 | (3) |
|
|
263 | (1) |
|
11.7.2.3 Silane Treatment |
|
|
263 | (1) |
|
|
263 | (1) |
|
11.7.2.5 Enzyme Treatment |
|
|
264 | (1) |
|
|
265 | (1) |
|
11.7.2.7 Graft Copolymerization |
|
|
265 | (1) |
|
|
266 | (5) |
|
|
266 | (5) |
|
12 Surface Modification Strategies for Cellulosic Fibers |
|
|
271 | (10) |
|
|
|
|
271 | (2) |
|
12.2 Special Treatments during Primary Processing |
|
|
273 | (4) |
|
12.2.1 Microwave Curing of Biocomposites |
|
|
274 | (1) |
|
12.2.2 Chemical Treatments of Fibers During Primary Processing of Biocomposites |
|
|
274 | (1) |
|
12.2.2.1 Alkaline Treatment |
|
|
275 | (1) |
|
12.2.2.2 Silane Treatment |
|
|
276 | (1) |
|
12.3 Other Chemical Treatments |
|
|
277 | (1) |
|
|
278 | (3) |
|
|
279 | (2) |
|
13 Effect of Chemical Functionalization on Functional Properties of Cellulosic Fiber-Reinforced Polymer Composites |
|
|
281 | (20) |
|
|
|
|
|
|
282 | (1) |
|
13.2 Chemical Functionalization of Cellulosic Fibers |
|
|
283 | (1) |
|
|
283 | (1) |
|
|
283 | (1) |
|
13.2.3 Composites Fabrication |
|
|
283 | (1) |
|
13.3 Results and Discussion |
|
|
284 | (13) |
|
13.3.1 Mechanical Properties |
|
|
284 | (1) |
|
13.3.1.1 Tensile Strength |
|
|
284 | (2) |
|
13.3.1.2 Compressive Strength |
|
|
286 | (2) |
|
13.3.1.3 Flexural Strength |
|
|
288 | (1) |
|
|
288 | (1) |
|
|
289 | (1) |
|
13.3.4 Thermogravimetric Analysis |
|
|
290 | (1) |
|
13.3.5 Evaluation of Physico-Chemical Properties |
|
|
290 | (1) |
|
13.3.5.1 Water Absorption |
|
|
290 | (2) |
|
13.3.5.2 Chemical Resistance |
|
|
292 | (1) |
|
13.3.5.3 Moisture Absorption |
|
|
293 | (2) |
|
13.3.6 Limiting Oxygen Index (LOI) Test |
|
|
295 | (2) |
|
|
297 | (4) |
|
|
297 | (4) |
|
14 Chemical Modification and Properties of Cellulose-Based Polymer Composites |
|
|
301 | (26) |
|
|
|
|
|
302 | (1) |
|
|
303 | (3) |
|
14.3 Benzene Diazonium Salt Treatment |
|
|
306 | (4) |
|
14.4 o-hydroxybenzene Diazonium Salt Treatment |
|
|
310 | (3) |
|
14.5 Succinic Anhydride Treatment |
|
|
313 | (4) |
|
14.6 Acrylonitrile Treatment |
|
|
317 | (1) |
|
14.7 Maleic Anhydride Treatment |
|
|
318 | (1) |
|
|
318 | (2) |
|
14.9 Some other Chemical Treatment with Natural Fibers |
|
|
320 | (1) |
|
14.9.1 Epoxides Treatment |
|
|
320 | (1) |
|
14.9.2 Alkyl Halide Treatment |
|
|
320 | (1) |
|
14.9.3 β- Propiolactone Treatments |
|
|
320 | (1) |
|
14.9.4 Cyclic Anhydride Treatments |
|
|
321 | (1) |
|
14.9.5 Oxidation of Natural Fiber |
|
|
321 | (1) |
|
|
321 | (6) |
|
|
322 | (5) |
|
Part III PHYSICO-CHEMICAL AND MECHANICAL BEHAVIOUR OF CELLULOSE/ POLYMER COMPOSITES |
|
|
|
15 Weathering of Lignocellulosic Polymer Composites |
|
|
327 | (42) |
|
|
|
|
328 | (1) |
|
15.2 Wood and Plant Fibers |
|
|
329 | (1) |
|
|
330 | (5) |
|
15.3.1 Lignocellulosic Fibers |
|
|
332 | (1) |
|
|
333 | (1) |
|
15.3.3 Methods for Improving UV Resistance of LPCs |
|
|
334 | (1) |
|
|
335 | (7) |
|
15.4.1 Lignocellulosic Fibers |
|
|
336 | (3) |
|
|
339 | (1) |
|
15.4.3 Methods for Improving Moisture Resistance of LPCs |
|
|
340 | (2) |
|
15.5 Testing of Weathering Properties |
|
|
342 | (3) |
|
15.6 Studies on Weathering of LPCs |
|
|
345 | (17) |
|
15.6.1 Lignocellulosic Fibers |
|
|
345 | (1) |
|
15.6.2 Lignocellulosic Thermoplastic Composites |
|
|
346 | (6) |
|
15.6.2.1 Effects of Photostabilizers and Surface Treatments |
|
|
352 | (7) |
|
15.6.3 Lignocellulosic Thermoset Composites |
|
|
359 | (1) |
|
15.6.4 Lignocellulosic Biodegradable Polymer Composites |
|
|
360 | (2) |
|
|
362 | (7) |
|
|
363 | (6) |
|
16 Effect of Layering Pattern on the Physical, Mechanical and Acoustic Properties of Luffa/Coir Fiber-Reinforced Epoxy Novolac Hybrid Composites |
|
|
369 | (16) |
|
|
|
|
|
369 | (4) |
|
|
373 | (1) |
|
|
373 | (1) |
|
16.2.2 Synthesis of Epoxy Novolac Resin (ENR) |
|
|
373 | (1) |
|
16.2.3 Fabrication of Composite Materials via Hot-pressing |
|
|
373 | (1) |
|
16.3 Characterization of ENR-Based Luffa/Coir Hybrid Composites |
|
|
374 | (2) |
|
16.3.1 Dimensional Stability Test |
|
|
374 | (1) |
|
16.3.2 Mechanical Strength Analysis |
|
|
375 | (1) |
|
16.3.3 Sound Absorption Test |
|
|
375 | (1) |
|
16.3.4 Scanning Electron Microscopy (SEM) |
|
|
375 | (1) |
|
16.4 Results and Discussion |
|
|
376 | (7) |
|
16.4.1 Water Absorption Test |
|
|
376 | (1) |
|
16.4.2 Thickness Swelling Test |
|
|
377 | (1) |
|
16.4.3 Effect of Different Configurations on Mechanical Properties |
|
|
378 | (2) |
|
16.4.4 Sound Absorption Performances |
|
|
380 | (1) |
|
16.4.5 Study of Hybrid Composite Microstructure |
|
|
381 | (2) |
|
|
383 | (2) |
|
|
383 | (1) |
|
|
383 | (2) |
|
17 Fracture Mechanism of Wood-Plastic Composites (WPCS): Observation and Analysis |
|
|
385 | (32) |
|
|
|
|
|
385 | (11) |
|
17.1.1 Fracture Behavior of Particulate Composites |
|
|
386 | (1) |
|
17.1.1.1 Particle Size, Volume Fraction, and Fillers Orientation |
|
|
386 | (3) |
|
17.1.1.2 Fillers & Polymers Characteristics |
|
|
389 | (2) |
|
|
391 | (1) |
|
|
391 | (2) |
|
|
393 | (3) |
|
|
396 | (2) |
|
17.3 Toughness Characterization |
|
|
398 | (2) |
|
17.4 Fracture Observation |
|
|
400 | (2) |
|
|
402 | (7) |
|
17.5.1 Macroscale Modeling |
|
|
402 | (1) |
|
17.5.2 Multi-scale Modeling |
|
|
403 | (1) |
|
17.5.3 Cohesive Zone Model (CZM) |
|
|
404 | (3) |
|
17.5.4 Other Numerical Methods |
|
|
407 | (1) |
|
|
408 | (1) |
|
|
409 | (8) |
|
|
410 | (7) |
|
18 Mechanical Behavior of Biocomposites under Different Operating Environments |
|
|
417 | (18) |
|
|
|
|
|
417 | (2) |
|
18.2 Classification and Structure of Natural Fibers |
|
|
419 | (2) |
|
18.3 Moisture Absorption Behavior of Biocomposites |
|
|
421 | (2) |
|
18.4 Mechanical Characterization of Biocomposites in a Humid Environment |
|
|
423 | (1) |
|
18.5 Oil Absorption Behavior and Its Effects on Mechanical Properties of Biocomposites |
|
|
424 | (1) |
|
18.6 UV-Irradiation and Its Effects on Mechanical Properties of Biocomposites |
|
|
425 | (1) |
|
18.7 Mechanical Behavior of Biocomposites Subjected to Thermal Loading |
|
|
426 | (2) |
|
18.8 Biodegradation Behavior and Mechanical Characterization of Soil Buried Biocomposites |
|
|
428 | (1) |
|
|
429 | (6) |
|
Part IV APPLICATIONS OF CELLULOSE/POLYMER COMPOSITES 19 Cellulose Composites for Construction Applications |
|
|
435 | (116) |
|
Catalina Gomez Hoyos and Analia Vazquez |
|
|
|
19.1 Polymers Reinforced with Natural Fibers for Construction Applications |
|
|
435 | (5) |
|
19.1.1 Durability of Polymer-Reinforced with Natural Fibers |
|
|
438 | (1) |
|
19.1.2 Classification of Polymer Composites Reinforced with Natural Fibers |
|
|
439 | (1) |
|
19.2 Portland Cement Matrix Reinforced with Natural Fibers for Construction Applications |
|
|
440 | (13) |
|
19.2.1 Modifications on Cement Matrix to Increase Durability |
|
|
441 | (1) |
|
19.2.1.1 Pozzolanic Aditions |
|
|
441 | (1) |
|
19.2.1.2 Carbonation of Cement Matrix |
|
|
442 | (1) |
|
19.2.2 Modifications on Natural Fibers to Increase Durability of Cement Composites |
|
|
443 | (2) |
|
19.2.3 Application of Cement Composites Reinforced with Cellulosic Fibers |
|
|
445 | (1) |
|
19.2.4 Celllulose Micro and Nanofibers Used to Reinforce Cement Matrices |
|
|
446 | (2) |
|
|
448 | (5) |
|
20 Jute: An Interesting Lignocellulosic Fiber for New Generation Applications |
|
|
453 | (24) |
|
|
|
|
453 | (2) |
|
20.2 Reinforcing Biofibers |
|
|
455 | (10) |
|
20.2.1 Chemical Constituents and Structural Aspects of Lignocellulosic Fiber |
|
|
457 | (1) |
|
20.2.2 Properties of Jute |
|
|
458 | (2) |
|
20.2.3 Cost Aspects, Availability and Sustainable Development |
|
|
460 | (1) |
|
20.2.4 Surface Treatments |
|
|
461 | (1) |
|
|
461 | (1) |
|
20.2.5.1 Compression Molding |
|
|
462 | (1) |
|
20.2.5.2 Resin Transfer Molding |
|
|
462 | (1) |
|
20.2.5.3 Vacuum-Assisted Resin Transfer Molding (VARTM) |
|
|
463 | (1) |
|
20.2.5.4 Injection Molding |
|
|
464 | (1) |
|
20.2.5.5 Direct Long-Fiber Thermoplastic Molding (D-LFT) |
|
|
464 | (1) |
|
20.3 Biodegradable Polymers |
|
|
465 | (1) |
|
20.4 Jute-Reinforced Biocomposites |
|
|
466 | (2) |
|
|
468 | (1) |
|
|
468 | (9) |
|
|
469 | (1) |
|
|
469 | (8) |
|
21 Cellulose-Based Polymers for Packaging Applications |
|
|
477 | (22) |
|
|
|
477 | (4) |
|
21.1.1 Packaging Materials |
|
|
479 | (1) |
|
|
479 | (1) |
|
21.1.3 Problems of Plastics |
|
|
480 | (1) |
|
21.2 Cellulose as a Polymeric Biomaterial |
|
|
481 | (9) |
|
21.2.1 Cellulose Extraction |
|
|
482 | (1) |
|
21.2.2 Cellulosic Composites (Green Composites) |
|
|
483 | (3) |
|
21.2.3 Cellulose Derivatives Composites |
|
|
486 | (1) |
|
|
486 | (1) |
|
|
487 | (1) |
|
21.2.3.3 Regenerated Cellulose Fibers |
|
|
488 | (1) |
|
21.2.3.4 Bacterial Cellulose (BC) |
|
|
489 | (1) |
|
21.3 Cellulose as Coatings and Films Material |
|
|
490 | (2) |
|
|
491 | (1) |
|
|
492 | (1) |
|
21.4 Nanocellulose or Cellulose Nanocomposites |
|
|
492 | (1) |
|
21.5 Quality Control Tests |
|
|
493 | (2) |
|
|
495 | (4) |
|
|
496 | (3) |
|
22 Applications of Kenaf-Lignocellulosic Fiber in Polymer Blends |
|
|
499 | (24) |
|
|
|
|
499 | (1) |
|
|
500 | (5) |
|
22.3 Kenaf: Malaysian Cultivation |
|
|
505 | (3) |
|
22.4 Kenaf Fibers and Composites |
|
|
508 | (1) |
|
22.5 Kenaf Fiber Reinforced Low Density Polyethylene/Thermoplastic Sago Starch Blends |
|
|
509 | (3) |
|
22.6 The Effects of Kenaf Fiber Treatment on the Properties of LDPE/TPSS Blends |
|
|
512 | (5) |
|
22.7 Outlook and Future Trends |
|
|
517 | (6) |
|
|
517 | (1) |
|
|
517 | (6) |
|
23 Application of Natural Fiber as Reinforcement in Recycled Polypropylene Biocomposites |
|
|
523 | (28) |
|
|
|
|
523 | (10) |
|
23.1.1 Natural Fibers -- An Introduction |
|
|
525 | (1) |
|
23.1.2 Chemical Composition of Natural Fiber |
|
|
526 | (3) |
|
23.1.3 Classification of Natural Fibers |
|
|
529 | (1) |
|
23.1.4 Surface Modification of Natural Fibers |
|
|
530 | (1) |
|
23.1.4.1 Alkali Treatment |
|
|
530 | (1) |
|
23.1.4.2 Silane Treatment (SiH4) |
|
|
530 | (1) |
|
23.1.4.3 Acetylation of Natural Fibers |
|
|
531 | (1) |
|
23.1.5 Properties of Natural Fibers |
|
|
532 | (1) |
|
23.2 Recycled Polypropylene (RPP) -- A matrix for Natural Fiber Composites |
|
|
533 | (1) |
|
23.3 Natural Fiber-Based Composites -- An Overview |
|
|
534 | (11) |
|
23.3.1 Sisal Fiber-Based Recycled Polypropylene (RPP) Composites |
|
|
535 | (1) |
|
23.3.1.1 Mechanical and Dynamic Mechanical Properties of Sisal RPP Composites |
|
|
536 | (3) |
|
23.3.1.2 Thermal Properties Sisal RPP Composites |
|
|
539 | (2) |
|
23.3.1.3 Weathering and Its Effect on Mechanical Properties of Sisal RPP Composites |
|
|
541 | (2) |
|
23.3.1.4 Fracture Analysis of RPP and its Composites |
|
|
543 | (2) |
|
|
545 | (6) |
|
|
545 | (6) |
Index |
|
551 | |