Muutke küpsiste eelistusi

E-raamat: Low-Visibility Antennas for Communication Systems

  • Formaat - PDF+DRM
  • Hind: 76,69 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Low-visibility antennas have many attractive features, such as being low-profile, flexible, lightweight, small-volume, and low-cost. Low-Visibility Antennas for Communication Systems provides explicit guidelines for the development of these antennas. Offering valuable insight into emerging antenna technologies, the book:





Introduces the fundamental theory of electromagnetics and antennas with few integral and differential equations, improving accessibility while providing sufficient mathematical detail Presents state-of-the-art advancements in microstrip, millimeter (mm) wave microstrip, wearable, wearable tunable printed, wideband wearable meta-material, and fractal printed antennas Discusses microwave integrated circuits (MICs), monolithic microwave integrated circuits (MMICs), micro-electro-mechanical systems (MEMS), and low temperature co-fired ceramics (LTCC)

Low-Visibility Antennas for Communication Systems delivers a comprehensive and cutting-edge study of the design and application of low-visibility antennas, complete with design considerations, computed and measured results, and an extensive exploration of radio frequency and antenna measurements.

Arvustused

" focused on small antennas, where interactions with small volume objects and with the human body have utmost importance. provides detailed information on how to understand and design small antennas in such environments. Antenna designers will gain fresh ideas from insight into the author's experience." Prof. Ely Levine, Afeka College of Engineering, Tel Aviv, Israel

Series Preface xiii
Preface xv
About the Author xvii
Chapter 1 Electromagnetic Theory and Transmission Lines 1(38)
1.1 Definitions
1(1)
1.2 Electromagnetic Waves
2(4)
1.2.1 Maxwell's Equations
2(1)
1.2.2 Gauss's Law for Electric Fields
3(1)
1.2.3 Gauss's Law for Magnetic Fields
3(1)
1.2.4 Ampere's Law
3(1)
1.2.5 Faraday's Law
4(1)
1.2.6 Wave Equations
4(2)
1.3 Transmission Lines
6(5)
1.4 Matching Techniques
11(5)
1.4.1 Smith Chart Guidelines
14(1)
1.4.2 Quarter-Wave Transformers
14(1)
1.4.3 Wideband Matching—Multisection Transformers
15(1)
1.4.4 Single-Stub Matching
15(1)
1.5 Coaxial Transmission Line
16(2)
1.5.1 Cutoff Frequency and Wavelength of Coaxial Cables
18(1)
1.6 Microstrip Line
18(6)
1.6.1 Effective Dielectric Constant
19(1)
1.6.2 Characteristic Impedance
19(1)
1.6.3 Higher-Order Transmission Modes in a Microstrip Line
20(1)
1.6.3.1 Examples
20(1)
1.6.3.2 Losses in Microstrip Line
21(1)
1.6.4 Conductor Loss
21(1)
1.6.5 Dielectric Loss
21(3)
1.7 Materials
24(1)
1.8 Waveguides
24(6)
1.8.1 TE Waves
25(3)
1.8.2 TM Waves
28(2)
1.9 Circular Waveguide
30(6)
1.9.1 TE Waves in a Circular Waveguide
32(2)
1.9.2 TM Waves in a Circular Waveguide
34(2)
References
36(3)
Chapter 2 Basic Antenna Theory 39(24)
2.1 Introduction to Antennas
39(1)
2.2 Antenna Parameters
39(3)
2.3 Dipole Antenna
42(5)
2.3.1 Radiation from a Small Dipole
42(1)
2.3.2 Dipole Radiation Pattern
43(1)
2.3.3 Dipole E-Plane Radiation Pattern
44(1)
2.3.4 Dipole H-Plane Radiation Pattern
44(1)
2.3.5 Antenna Radiation Pattern
45(1)
2.3.6 Dipole Directivity
46(1)
2.3.7 Antenna Impedance
47(1)
2.3.8 Impedance of a Folded Dipole
47(1)
2.4 Basic Aperture Antennas
47(4)
2.4.1 The Parabolic Reflector Antenna
48(1)
2.4.2 Reflector Directivity
49(2)
2.4.3 Cassegrain Reflector
51(1)
2.5 Horn Antennas
51(10)
2.5.1 E-Plane Sectoral Horn
51(3)
2.5.2 H-Plane Sectoral Horn
54(5)
2.5.3 Pyramidal Horn Antenna
59(2)
References
61(2)
Chapter 3 Low-Visibility Printed Antennas 63(26)
3.1 Microstrip Antennas
63(5)
3.1.1 Introduction to Microstrip Antennas
63(2)
3.1.2 Transmission Line Model of Microstrip Antennas
65(1)
3.1.3 Higher-Order Transmission Modes in Microstrip Antennas
66(1)
3.1.4 Effective Dielectric Constant
67(1)
3.1.5 Losses in Microstrip Antennas
67(1)
3.1.5.1 Conductor Loss
67(1)
3.1.5.2 Dielectric Loss
67(1)
3.1.6 Patch Radiation Pattern
68(1)
3.2 Two-Layer Stacked Microstrip Antennas
68(3)
3.3 Stacked Monopulse Ku Band Patch Antenna
71(1)
3.3.1 Rat-Race Coupler
71(1)
3.4 Loop Antennas
72(8)
3.4.1 Small Loop Antenna
72(1)
3.4.2 Printed Loop Antenna
73(3)
3.4.3 Radio Frequency Identification Loop Antennas
76(1)
3.4.4 New Loop Antenna with Ground Plane
77(3)
3.5 Wired Loop Antenna
80(1)
3.6 Radiation Pattern of a Loop Antenna Near a Metal Sheet
81(2)
3.7 Planar Inverted-F Antenna
83(4)
3.7.1 Grounded Quarter-Wavelength Patch Antenna
84(1)
3.7.2 A New Double-Layer PIFA Antenna
85(2)
References
87(2)
Chapter 4 Antenna Array 89(20)
4.1 Introduction
89(1)
4.2 Array Radiation Pattern
89(2)
4.3 Broadside Array
91(1)
4.4 End-Fire Array
92(1)
4.5 Printed Arrays
92(2)
4.6 Stacked Microstrip Antenna Arrays
94(1)
4.7 Ka Band Microstrip Antenna Arrays
95(2)
4.8 Series Fed Microstrip Arrays
97(6)
4.9 Stacked Series Fed Microstrip 8-Element Array
103(2)
4.10 Stacked Series Parallel Fed Microstrip 64-Element Array
105(1)
4.11 Conclusions
106(1)
References
106(3)
Chapter 5 Applications of Low-Visibility Printed Antennas 109(24)
5.1 Introduction
109(1)
5.2 Low-Visibility Microstrip Antenna Arrays with High Efficiency
110(6)
5.2.1 Evaluation of Microstrip Feed Network Losses
111(1)
5.2.2 Evaluation of Radiation Loss
111(2)
5.2.3 Radiation Loss from Microstrip Discontinuities
113(1)
5.2.4 64- and 256-Microstrip Antenna Arrays with High Efficiency
114(2)
5.3 W Band Microstrip Antenna Detection Array
116(5)
5.3.1 The Array Principle of Operation
117(1)
5.3.2 W Band Antenna Design
118(1)
5.3.3 Resistor Design
119(2)
5.3.4 220-GHz Microstrip Patch Antenna
121(1)
5.4 Medical Applications of Microstrip Antennas
121(10)
5.4.1 Dual Polarized 434-MHz Printed Antenna
121(3)
5.4.2 New Loop Antenna with a Ground Plane
124(1)
5.4.3 Antenna S11 Variation as a Function of Distance from the Body
124(4)
5.4.4 Medical Applications for Low-Visibility Antennas
128(3)
5.5 Conclusion
131(1)
References
132(1)
Chapter 6 Wearable Antennas for Communication and Medical Applications 133(26)
6.1 Introduction
133(1)
6.2 Dually Polarized Wearable 434-MHz Printed Antenna
134(3)
6.3 Loop Antenna with a Ground Plane
137(3)
6.4 Antenna S11 Variation as a Function of Distance from the Body
140(4)
6.5 Wearable Antennas
144(2)
6.6 Compact Dual Polarized Printed Antenna
146(1)
6.7 Helix Antenna Performance on the Human Body
147(3)
6.8 Compact Wearable RFID Antennas
150(6)
6.8.1 Dual Polarized 13.5-MHz Compact Printed Antenna
150(1)
6.8.2 Varying the Antenna Feed Network
151(3)
6.8.3 RFID Wearable Loop Antennas
154(1)
6.8.4 Proposed Antenna Applications
155(1)
6.9 Conclusions
156(1)
References
157(2)
Chapter 7 Wearable Tunable Printed Antennas for Medical Applications 159(12)
7.1 Introduction
159(1)
7.2 Varactor Theory
159(2)
7.2.1 Varactor Diode Basics
159(2)
7.2.2 Types of Varactors
161(1)
7.3 Dually Polarized Tunable Printed Antenna
161(2)
7.4 Wearable Tunable Antennas
163(2)
7.5 Tunable Antenna Varactors
165(1)
7.6 Measurements of Tunable Antennas
165(1)
7.7 Folded Dual Polarized Tunable Antenna
166(1)
7.8 Medical Applications for Tunable Antennas
167(2)
7.9 Conclusions
169(1)
References
169(2)
Chapter 8 New Wideband Wearable Meta-Material Antennas for Communication Applications 171(24)
8.1 Introduction
171(1)
8.2 New Antennas with SRRs
171(6)
8.3 Folded Dipole Meta-Material Antenna with SRRs
177(2)
8.4 Stacked Patch Antenna Loaded with SRRs
179(2)
8.5 Patch Antenna Loaded with SRRs
181(2)
8.6 Meta-Material Antenna Characteristics in the Vicinity of the Human Body
183(4)
8.7 Meta-Material Wearable Antennas
187(2)
8.8 Wideband Stacked Patch with SRR
189(1)
8.9 Small Meta-Material Antenna Analysis
190(2)
8.10 Conclusion
192(1)
References
192(3)
Chapter 9 Fractal Printed Antennas 195(32)
9.1 Introduction
195(1)
9.2 Fractal Structures
195(1)
9.3 Fractal Antennas
196(2)
9.4 Antiradar Fractals and/or Multilevel Chaff Dispersers
198(1)
9.4.1 Definition of Chaff
198(1)
9.4.2 Geometry of Dispersers
198(1)
9.5 Definition of Multilevel Structure
199(1)
9.6 Advanced Antenna System
200(1)
9.7 Comparison between Euclidean and Fractal Antennas
201(1)
9.8 Multilevel and Space-Filling Ground Planes for Miniature and Multiband Antennas
202(2)
9.8.1 Multilevel Geometry
202(1)
9.8.2 Space-Filling Curve
202(2)
9.9 Applications of Fractal Printed Antennas
204(16)
9.9.1 New 2.5-GHz Fractal Printed Antennas with Space-Filling Perimeter on the Radiator
204(4)
9.9.2 New Stacked Patch 2.5-GHz Fractal Printed Antennas
208(2)
9.9.3 New 8-GHz Fractal Printed Antennas with Space-Filling Perimeter of the Conducting Sheet
210(3)
9.9.4 New Stacked Patch 7.4-GHz Fractal Printed Antennas
213(7)
9.10 New Fractal Printed Antennas Using Double-Layer Hilbert Curves
220(5)
9.10.1 New 3.3-GHz Fractal Printed Antennas Using Double-Layer Hilbert Curves
220(1)
9.10.2 New 3.3-GHz Fractal Printed Antennas Using Hilbert Curves on the Resonator Layer
221(4)
9.11 Conclusions
225(1)
References
225(2)
Chapter 10 Microwave and MM Wave Technologies 227(24)
10.1 Introduction
227(1)
10.2 Microwave Integrated Circuits
227(1)
10.3 Monolithic Microwave Integrated Circuits
228(9)
10.3.1 MMIC Design Facts
229(1)
10.3.2 MMIC Technology Features
230(1)
10.3.3 Types of Components Designed
230(1)
10.3.4 Advantages of GaAs versus Silicon
231(1)
10.3.5 Semiconductor Technology
232(1)
10.3.6 MMIC Fabrication Process
232(4)
10.3.7 Generation of Microwave Signals in Microwave and MM Wave
236(1)
10.3.8 MMIC Circuit Examples and Applications
237(1)
10.4 MEMS Technology
237(5)
10.4.1 MEMS Technology Advantages
239(1)
10.4.2 MEMS Technology Process
239(1)
10.4.3 MEMS Components
240(2)
10.5 LTCC and HTCC Technology
242(8)
10.5.1 LTCC and HTCC Technology Process
243(3)
10.5.2 Design of High-Pass LTCC Filters
246(3)
10.5.3 Comparison of Single-Layer and Multilayer Microstrip Circuits
249(1)
10.6 Conclusions
250(1)
References
250(1)
Chapter 11 Radio Frequency Measurements 251(14)
11.1 Introduction
251(1)
11.2 Multiport Networks with N Ports
251(1)
11.3 Scattering Matrix
252(2)
11.4 S-Parameter Measurements
254(2)
11.4.1 Types of S-Parameter Measurements
255(1)
11.5 Transmission Measurements
256(1)
11.6 Output Power and Linearity Measurements
257(1)
11.7 Antenna Measurements
257(6)
11.7.1 Radiation Pattern Measurements
258(2)
11.7.2 Directivity and Antenna Effective Area
260(1)
11.7.3 Radiation Efficiency
260(1)
11.7.4 Typical Antenna Radiation Pattern
261(1)
11.7.5 Gain Measurements
261(2)
11.8 Antenna Range Setup
263(1)
References
263(2)
Index 265
Albert Sabban holds a Ph.D from the University of Colorado Boulder, USA; an M.Sc from Tel Aviv University, Israel; and a US patent on wideband microstrip antennas. Dr. Sabban is currently a senior lecturer in the Department of Electrical and Electronic Engineering at ORT Braude College, Karmiel, Israel. He was previously a senior R&D scientist and project leader at Rafael Advanced Defense Systems Ltd., Haifa, Israel; a teaching assistant in the Electrical Engineering Department at the Technion Israel Institute of Technology; and a research assistant in the Microwave and Millimeter Wave Computer Aided Design Center at the University of Colorado Boulder.