Muutke küpsiste eelistusi

E-raamat: Low Voltage Electron Microscopy: Principles and Applications

Edited by (JEOL USA Inc.), Edited by (Harvard University)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 111,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

"Part of the Wiley-Royal Microscopical Society Series, this book discusses the rapidly developing cutting-edge field of low-voltage microscopy, a field that has only recently emerged due to the rapid developments in the electron optics design and image processing. It serves as a guide for current and new microscopists and materials scientists who are active in the field of nanotechnology, and presents applications in nanotechnology and research of surface-related phenomena, allowing researches to observe materials as never before"--

"The book describes the recent advances in the area of low-voltage electron microscopy, covering topics in TEM, SEM, STEM"--

Part of the Wiley-Royal Microscopical Society Series , this book discusses the rapidly developing cutting-edge field of low-voltage microscopy, a field that has only recently emerged due to the rapid developments in the electron optics design and image processing.

Part of the Wiley-Royal Microscopical Society Series, this book discusses the rapidly developing cutting-edge field of low-voltage microscopy, a field that has only recently emerged due to the rapid developments in the electron optics design and image processing.

It serves as a guide for current and new microscopists and materials scientists who are active in the field of nanotechnology, and presents applications in nanotechnology and research of surface-related phenomena, allowing researches to observe materials as never before.

List of Contributors ix
Preface xi
1 Introduction to the Theory and Advantages of Low Voltage Electron Microscopy 1(30)
David C. Bell
Natasha Erdman
1.1 Introduction
1(1)
1.2 Historical Perspective
2(1)
1.3 Beam Interaction with Specimen-Elastic and Inelastic Scattering
3(8)
1.3.1 The Scattering Cross Section
6(4)
1.3.2 Effects of Specimen Damage
10(1)
1.4 Instrument Configuration
11(1)
1.4.1 Scanning Electron Microscope
11(1)
1.4.2 Transmission Electron Microscope
12(1)
1.4.3 Scanning Transmission Electron Microscope
12(1)
1.5 Influence of Electron Optics Aberrations at Low Voltages
12(4)
1.5.1 Spherical Aberration
13(1)
1.5.2 Effect of Chromatic Aberration
14(1)
1.5.3 The Diffraction Limit
15(1)
1.5.4 Optimizing Spot Size for SEM and STEM
15(1)
1.6 SEM Imaging at Low Voltages
16(10)
1.6.1 Primary Contrast Signals and their Detection in SEM
18(1)
1.6.2 Backscattered Electrons
18(3)
1.6.3 Secondary Electrons
21(2)
1.6.4 Charge Balance in SEM
23(1)
1.6.5 SEM Image Contrast
24(1)
1.6.6 Microanalysis in SEM at Low Voltages
25(1)
1.7 TEM/STEM Imaging and Analysis at Low Voltages
26(1)
1.8 Conclusion
27(1)
References
28(3)
2 SEM Instrumentation Developments for Low kV Imaging and Microanalysis 31(26)
Natasha Erdman
David C. Bell
2.1 Introduction
31(2)
2.2 The Electron Source
33(3)
2.3 SEM Column Design Considerations
36(5)
2.4 Beam Deceleration
41(2)
2.5 Novel Detector Options and Energy Filters
43(5)
2.5.1 Secondary Detectors
43(2)
2.5.2 Backscatter Detectors
45(3)
2.6 Low Voltage STEM in SEM
48(2)
2.7 Aberration Correction in SEM
50(3)
2.8 Conclusions
53(1)
References
53(4)
3 Extreme High-Resolution (XHR) SEM Using a Beam Monochromator 57(16)
Richard J. Young
Gerard N.A. van Veen
Alexander Henstra
Lubomir Tuma
3.1 Introduction
57(1)
3.2 Limitations in Low Voltage SEM Performance
58(1)
3.2.1 Aberration Correction
58(1)
3.2.2 Electron Source Energy Spread
59(1)
3.3 Beam Monochromator Design and Implementation
59(4)
3.4 XHR Systems and Applications
63(6)
3.4.1 Elstar XHR Electron Column
64(1)
3.4.2 Beam Deceleration for Extending Low-Voltage Performance
65(2)
3.4.3 Combination of a Monochromator with Non-Immersion Lens
67(1)
3.4.4 XHR Applications
68(1)
3.5 Conclusions
69(1)
Acknowledgements
70(1)
References
70(3)
4 The Application of Low-Voltage SEM-From Nanotechnology to Biological Research 73(24)
Natasha Erdman
David C. Bell
4.1 Introduction
73(1)
4.2 Specimen Preparation Considerations
74(2)
4.3 Nanomaterials Applications
76(8)
4.3.1 Nanoparticles, Nanotubes and Nanowires
76(5)
4.3.2 Nanoporous Materials
81(2)
4.3.3 Graphene
83(1)
4.4 Beam Sensitive Materials
84(1)
4.5 Semiconductor Materials
85(2)
4.6 Biological Specimens
87(4)
4.7 Low-Voltage Microanalysis
91(1)
4.8 Conclusions
92(1)
References
93(4)
5 Low Voltage High-Resolution Transmission Electron Microscopy 97(22)
David C. Bell
5.1 Introduction
97(2)
5.2 So How Low is Low?
99(1)
5.3 The Effect of Chromatic Aberration and Chromatic Aberration Correction
100(3)
5.4 The Electron Monochromator
103(2)
5.5 Theoretical Tradeoffs of Low kV Imaging
105(4)
5.6 Our Experience at 40 keV LV-HREM
109(1)
5.7 Examples of LV-HREM Imaging
110(4)
5.8 Conclusions
114(2)
References
116(3)
6 Gentle STEM of Single Atoms: Low keV Imaging and Analysis at Ultimate Detection Limits 119(44)
Ondrej L. Krivanek
Wu Zhou
Matthew F. Chisholm
Juan Carlos Idrobo
Tracy C. Lovejoy
Quentin M. Ramasse
Niklas Dellby
6.1 Introduction
119(2)
6.2 Optimizing STEM Resolution and Probe Current at Low Primary Energies
121(7)
6.3 STEM Image Formation
128(7)
6.3.1 Basic Principles
128(4)
6.3.2 ADF Imaging
132(3)
6.4 Gentle STEM Applications
135(19)
6.4.1 Single Atom Imaging
135(11)
6.4.2 Single Atom Spectroscopy
146(6)
6.4.3 Single Atom Fine Structure EELS
152(2)
6.5 Discussion
154(2)
6.6 Conclusion
156(1)
Acknowledgements
157(1)
References
157(6)
7 Low Voltage Scanning Transmission Electron Microscopy of Oxide Interfaces 163(22)
Robert Klie
7.1 Introduction
163(3)
7.2 Methods and Instrumentation
166(2)
7.3 Low Voltage Imaging and Spectroscopy
168(12)
7.3.1 SrTiO3/BiFeO3 Interface
168(2)
7.3.2 Si3N4/SiO2 Interfaces
170(5)
7.3.3 Ultrathin SrTiO3 films on GaAs
175(5)
7.4 Summary
180(1)
Acknowledgements
180(1)
References
180(5)
8 What's Next? The Future Directions in Low Voltage Electron Microscopy 185(16)
David C. Bell
Natasha Erdman
8.1 Introduction
185(1)
8.2 Unique Low Voltage SEM and TEM Instruments
186(6)
8.2.1 Miniature SEM Columns
186(1)
8.2.2 Dedicated Low Voltage TEM
187(2)
8.2.3 The Helium Ion Microscope as an Alternative to Low Voltage SEM Imaging
189(3)
8.3 Cameras, Detectors, and Other Accessories
192(6)
8.3.1 The Direct Electron Detector
192(3)
8.3.2 Silicon Drift Detectors for Low kV Nanoanalysis
195(3)
8.4 Conclusions
198(1)
References
199(2)
Index 201
David C. Bell received his PhD in physics from the University of Melbourne, Australia in 1997 and completed his postdoctoral studies at MIT in 1999. He was research faculty and principal investigator at the University of Minnesota from 2000 to 2002. In 2003, he joined the Center for Nanoscale Systems at Harvard University as a principal scientist and became the Manager for Imaging and Analysis in 2007. He has been a lecturer in applied physics at Harvard since 2003 and is a teaching professor at the Harvard Extension School. In 2007, he was a visiting scientist at the Department of Materials, Oxford University, UK. Dr Bell is one of the renowned experts in the field of elemental analysis using electron microscopy (TEM and STEM) and has co-authored a book on this subject. He has authored more than 70 research papers on the subjects of microscopy, materials science and biology and holds several patents. He is an elected Fellow of the Royal Microscopical Society, UK.

Natasha Erdman received her Ph.D. in Materials Science and Engineering from Northwestern University (Chicago, IL) in 2002. After completing her Ph.D. she worked as a Senior Research Chemist at UOP LLC (currently Honeywell) in Des Plaines, IL focusing on investigation of structure-properties relationship in various catalysts using electron microscopy techniques. In 2004 Dr. Erdman as joined JEOL USA Inc., and currently serves as an SEM and Ion-Beam Product Manager. She has authored over 30 peer-reviewed papers on the subjects of microscopy, materials science, chemistry and biology and is a renowned expert on ion-beam based sample preparation techniques for electron microscopy.