Muutke küpsiste eelistusi

E-raamat: Medical Image Computing and Computer Assisted Intervention - MICCAI 2023: 26th International Conference, Vancouver, BC, Canada, October 8-12, 2023, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 104,36 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The ten-volume set LNCS 14220, 14221, 14222, 14223, 14224, 14225, 14226, 14227, 14228, and 14229 constitutes the refereed proceedings of the 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023, which was held in Vancouver, Canada, in October 2023.The 730 revised full papers presented were carefully reviewed and selected from a total of 2250 submissions. The papers are organized in the following topical sections:





Part I: Machine learning with limited supervision and machine learning transfer learning;





Part II: Machine learning learning strategies; machine learning explainability, bias, and uncertainty;





Part III: Machine learning explainability, bias and uncertainty; image segmentation;





Part IV: Image segmentation;





Part V: Computer-aided diagnosis;





Part VI: Computer-aided diagnosis; computational pathology;





Part VII: Clinical applications abdomen; clinical applications breast; clinical applications cardiac; clinical applications dermatology; clinical applications fetal imaging; clinical applications lung; clinical applications musculoskeletal; clinical applications oncology; clinical applications ophthalmology; clinical applications vascular;





Part VIII: Clinical applications neuroimaging; microscopy;





Part IX: Image-guided intervention, surgical planning, and data science;





Part X: Image reconstruction and image registration.
Machine learning learning strategies.- machine learning
explainability, bias, and uncertainty.