Muutke küpsiste eelistusi

E-raamat: Micro- and Nanofabrication for Beginners

  • Formaat: 226 pages
  • Ilmumisaeg: 13-Jun-2022
  • Kirjastus: Jenny Stanford Publishing
  • Keel: eng
  • ISBN-13: 9781000246469
  • Formaat - EPUB+DRM
  • Hind: 90,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: 226 pages
  • Ilmumisaeg: 13-Jun-2022
  • Kirjastus: Jenny Stanford Publishing
  • Keel: eng
  • ISBN-13: 9781000246469

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In this book, the fundamentals of micro- and nanofabrication are described on the basis of the concept of “using gases as a fabrication tool.” Unlike other books available on the subject, this volume assumes only entry-level mathematics, physics, and chemistry of undergraduates or high-school students in science and engineering courses. Necessary theories are plainly explained to help the reader learn about this new attractive field and enable further reading of specialized books. The book is an attractive guide for students, young engineers, and anyone getting involved in micro- and nanofabrication from various fields including physics, electronics, chemistry, and materials sciences.
Preface xi
1 Introduction
1(6)
1.1 Technologies That Underline the Information Society
1(1)
1.2 World of Micro and Nano
2(3)
1.3 Contents and Construction of This Book
5(2)
2 Vacuum And Gas Kinetics
7(48)
2.1 Introduction
7(1)
2.2 Vacuum and Equation of State
7(3)
2.2.1 Vacuum
7(2)
2.2.2 Ideal Gases and Behavior of Gases
9(1)
2.3 Gas Pressure and Internal Energy
10(4)
2.3.1 Gas Pressure and Speed of Gas Molecules
11(2)
2.3.2 Internal Energy of a Gas
13(1)
2.4 Total Pressure and Partial Pressure
14(2)
2.5 Distribution Law of Gas Velocity
16(11)
2.5.1 Maxwell-Boltzmann Gas Velocity Distribution
16(1)
2.5.1.1 Mean speeds and most probable speed
16(2)
2.5.1.2 Meaning of distribution function
18(2)
2.5.2 Number of Molecules Passing Through a Unit Area
20(1)
2.5.2.1 Flux of incident molecules
20(2)
2.5.2.2 Number of molecules passing through an orifice (in the case of molecular flow)
22(1)
2.5.2.3 Adsorption of molecules onto clean surface
23(1)
2.5.2.4 Evaporation
24(1)
2.5.3 Cosine Law
24(3)
2.6 Mean Free Path and Collision Probability
27(6)
2.6.1 Mean Free Path
27(4)
2.6.2 Collision Probability
31(1)
2.6.3 Mean Free Path of a Gas Mixture
32(1)
2.7 Flow of Molecules Under Vacuum
33(7)
2.7.1 Viscous Flow and Molecular Flow
33(1)
2.7.2 Conductance
34(1)
2.7.3 Conductance Calculus
35(2)
2.7.4 Vacuum Flow Rate and Pumping Speed
37(2)
2.7.5 Gas Admission, Pressure Regulation, and Average Residence Time
39(1)
2.8 Vacuum Equipments
40(15)
2.8.1 Vacuum Chamber and Pipe/Fitting
40(1)
2.8.2 Vacuum Pumps
41(1)
2.8.2.1 General classification
41(1)
2.8.2.2 Types of vacuum pumps
42(7)
2.8.2.3 Introduction to practical designing of vacuum pumping systems
49(6)
3 Fundamentals Of Plasma
55(40)
3.1 Introduction
55(1)
3.2 What Is a Plasma?
56(9)
3.2.1 Particles in a Plasma
56(5)
3.2.2 Motion of Charged Particles in an Electromagnetic Field
61(1)
3.2.2.1 Motion in electric field
61(2)
3.2.2.2 Conservation of energy
63(1)
3.2.2.3 Motion in a magnetic field
64(1)
3.3 Collision of Electrons and Molecules
65(9)
3.3.1 Elastic and Inelastic Collisions
65(4)
3.3.2 Collision Processes
69(4)
3.3.3 Collision Cross Section
73(1)
3.4 Plasma Adjacent to Electrodes
74(4)
3.5 Plasma Apparatus and the Interior of a Plasma
78(17)
3.5.1 DC Glow Discharge
78(1)
3.5.1.1 Plasma apparatus
78(2)
3.5.1.2 Initiation of discharge
80(1)
3.5.1.3 Structure of DC glow discharge and plasma sustenance
80(3)
3.5.2 RF Plasma
83(1)
3.5.2.1 Principle and setup
83(4)
3.5.2.2 Self-bias and its applications
87(2)
3.5.3 Development of Plasma for Micro- and Nanofabrication
89(1)
3.5.3.1 Inductively coupled plasma
90(1)
3.5.3.2 Magnetic field and ECR plasma
90(5)
4 Physical Vapor Deposition
95(38)
4.1 Introduction
95(1)
4.2 Evaporation
96(17)
4.2.1 Evaporation and Deposition
96(1)
4.2.1.1 Vacuum evaporation
96(1)
4.2.1.2 Vacuum evaporator
96(2)
4.2.1.3 Vapor pressure
98(2)
4.2.1.4 Vaporization rate
100(1)
4.2.1.5 Deposition rate and film uniformity
101(4)
4.2.1.6 Multicomponent deposition and impurity incorporation
105(3)
4.2.2 Evaporation Sources and Derivative Methods
108(1)
4.2.2.1 Resistive evaporation
108(1)
4.2.2.2 Electron beam evaporation
109(1)
4.2.2.3 Reactive evaporation
110(1)
4.2.2.4 Ion plating
110(2)
4.2.3 Features of Vacuum Evaporation
112(1)
4.3 Sputtering
113(20)
4.3.1 Principle of Sputtering
113(1)
4.3.1.1 Sputtering phenomenon
114(3)
4.3.1.2 Sputtering yield
117(2)
4.3.1.3 Solid angular distribution of sputtered particles
119(1)
4.3.1.4 Film thickness distribution
120(2)
4.3.1.5 Properties of sputter-deposited films
122(2)
4.3.2 Sputter Deposition Apparatus
124(1)
4.3.2.1 DC sputter apparatus and RF sputter apparatus
124(1)
4.3.2.2 Magnetron sputtering
124(2)
4.3.3 Applied Sputter Deposition
126(1)
4.3.3.1 Reactive sputtering
126(1)
4.3.3.2 Deposition of alloys and compounds
127(2)
4.3.3.3 Ion beam sputtering
129(4)
5 Film Formation Process
133(26)
5.1 Introduction
133(1)
5.2 Thin Film Growth
133(6)
5.2.1 Atom Stacking and Development of a Film
133(3)
5.2.2 Film Surfaces
136(3)
5.3 Nucleation
139(8)
5.3.1 Equilibrium Theory
140(1)
5.3.1.1 Homogeneous nucleation
140(1)
5.3.1.2 Heterogeneous nucleation
141(2)
5.3.1.3 Surface and interfacial energy and growth mode
143(1)
5.3.2 Kinetics of Nucleation
144(1)
5.3.2.1 Adsorption and desorption
144(1)
5.3.2.2 Rate of nucleation
145(2)
5.4 Development of Film Microstructures
147(12)
5.4.1 Island Growth and Coalescence
147(3)
5.4.2 Development of Polycrystalline Film Structures
150(3)
5.4.3 Epitaxial Growth
153(6)
6 Etching
159(30)
6.1 Introduction
159(1)
6.2 Classification of Etching
159(6)
6.3 Wet Etching
165(3)
6.3.1 Isotropic Etching
165(1)
6.3.2 Anisotropic Etching
166(2)
6.4 Physical Dry Etching
168(3)
6.5 Chemical Dry Etching
171(7)
6.5.1 Thermoreactive chemical etching
171(1)
6.5.2 Plasma Etching
172(2)
6.5.2.1 Si etching under F-based chemistry
174(1)
6.5.2.2 Etching of SiO2 and Si3N4 using fluorinated gases
175(1)
6.5.2.3 Selective etching Si and Si02
176(2)
6.5.3 Photo-Assisted Chemical Etching and Electric Charging
178(1)
6.6 Physical and Chemical Dry Etching
178(11)
6.6.1 Reactive-Ion Etching
179(1)
6.6.1.1 Principle and apparatus of RIE
179(1)
6.6.1.2 Reaction mechanisms
179(3)
6.6.1.3 Anisotropic etching by sidewall protection
182(1)
6.6.2 Other Types of Ion-Assisted Etching Techniques
183(1)
6.6.2.1 Reactive-ion beam etching
183(1)
6.6.2.2 Remote plasma etching
184(5)
7 Photolithography
189(22)
7.1 Introduction
189(1)
7.2 Introduction to Photolithography
190(3)
7.3 Photoresist Process
193(4)
7.3.1 Photoresist Materials
194(1)
7.3.2 Photoresist Coating
195(2)
7.4 Photomask
197(3)
7.4.1 Photomask Materials
197(1)
7.4.2 Designing Photomask Patterns
198(2)
7.5 Exposure
200(11)
7.5.1 Printers
200(1)
7.5.1.1 Contact and proximity printers
200(1)
7.5.1.2 Projection printers and steppers
201(7)
7.5.2 Light Sources
208(3)
Appendix A Symbols and Variables 211(2)
Appendix B Basic Physical Constants 213(2)
Appendix C Development of Facets 215(4)
Index 219
Eiichi Kondoh, University of Yamanashi, Japan