Muutke küpsiste eelistusi

E-raamat: Micro-Nanorobotic Manipulation Systems and Their Applications

  • Formaat: PDF+DRM
  • Ilmumisaeg: 28-Feb-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642363917
  • Formaat - PDF+DRM
  • Hind: 122,88 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 28-Feb-2013
  • Kirjastus: Springer-Verlag Berlin and Heidelberg GmbH & Co. K
  • Keel: eng
  • ISBN-13: 9783642363917

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Micro-Nanorobotic Manipulation Systems and their Applications introduces these advanced technologies from the basics and applications aspects of Micro/Nano-Robotics and Automation from the prospective micro/nano-scale manipulation.



Micro/Nano Robotics and Automation technologies have rapidly grown associated with the growth of Micro and Nanotechnologies. This book presents a summary of fundamentals in micro-nano scale engineering and the current state of the art of these technologies.

“Micro-Nanorobotic Manipulation Systems and their Applications” introduces these advanced technologies from the basics and applications aspects of Micro/Nano-Robotics and Automation from the prospective micro/nano-scale manipulation. The book is organized in 9 chapters including an overview chapter of Micro/Nanorobotics and Automation technology from the historical view and important related research works. Further chapters are devoted to the physics of micro-nano fields as well as to material and science, microscopes, fabrication technology, importance of biological cell, and control techniques. Furthermore important examples, applications and a concise summary of Micro-Nanorobotics and Automation technologies are given.

Arvustused

From the reviews:

This work shows quite a few concrete aspects of micro-nanorobotic manipulation that are yet to be researched. This is an innovative book, which I would strongly recommend to everybody in nanoscience. It can also be a good reference for researchers and students of robotics in general, to get an overview of state-of-the-art micro-nanorobotic manipulation. (Arturo Ortiz-Tapia, Computing Reviews, February, 2014)

1 Introduction of Micro-Nanorobotic Manipulation Systems
1(44)
1.1 Background of Micro-Nanorobotic Manipulation Systems
2(5)
1.1.1 Why Micro to Nanotechnology?
3(1)
1.1.2 What Is Micro to Nanotechnology?
4(1)
1.1.3 What Is Micro-Nanorobotic Manipulation Systems?
4(3)
1.2 Strategies and Related Works of Micro-Nanorobotic Manipulation Systems
7(16)
1.2.1 Top-Down Approach
8(1)
1.2.2 Bottom-Up Approach
8(1)
1.2.3 Applicable Fields of Micro-Nanorobotic Manipulation Systems
8(6)
1.2.4 Related Works of Micromanipulations
14(4)
1.2.5 Related Works of Nanomanipulations
18(5)
1.3 Application Fields of Micro-Nanorobotic Manipulation Systems
23(22)
1.3.1 For Micro-Nano Mechatronics
23(4)
1.3.2 For Micro-Nanorobotics
27(1)
1.3.3 For System Cell Engineering
28(1)
1.3.4 For Single Cell Analysis
29(3)
1.3.5 For 3D Cell Assembly
32(6)
References
38(7)
2 Physics in Micro-Nano Scale
45(16)
2.1 Scaling Effects in Micro-Nano Scale
45(1)
2.2 Mechanics in Micro-Nano Scale
46(1)
2.2.1 van der Waals Forces
46(1)
2.2.2 Elastic Properties in Micro-Nanometer Scale
47(1)
2.3 Electronics in Micro-Nano Scale
47(4)
2.3.1 Electrostatic Force
47(1)
2.3.2 Dielectric Force
48(1)
2.3.3 Electrophoretic Force
49(1)
2.3.4 Field Emission Mechanism
49(1)
2.3.5 Optical Dielectrophoresis
50(1)
2.4 Fluidics in Micro-Nano Scale
51(2)
2.4.1 Brownian Motion
51(1)
2.4.2 Diffusion Phenomenon
51(1)
2.4.3 Navier-Stokes Equations
51(1)
2.4.4 Reynolds Number
52(1)
2.4.5 Knudsen Number
52(1)
2.4.6 Capillary Force
53(1)
2.5 Surface Interaction in Micro-Nano Scale
53(5)
2.5.1 Analysis of Intermolecular and Surface Forces
54(1)
2.5.2 Picking Up by Applying Dielectrophoresis under Surface Forces
55(1)
2.5.3 Adhesion Force of Micro-Nano Fibers
56(2)
2.6 Laser Trapping Mechanism
58(3)
References
59(2)
3 Related Technologies on Micro-Nanorobotic Manipulation Systems
61(46)
3.1 Materials and Science in Micro-Nano Scale
61(12)
3.1.1 Carbon Nanomaterials
61(1)
3.1.2 Carbon Nanotubes
61(8)
3.1.3 Sol-Gel Material
69(1)
3.1.4 Hydrophilic/Hydrophobic Material
69(2)
3.1.5 Biocompatible Material
71(2)
3.2 Microscopes in Micro-Nano Scale
73(10)
3.2.1 Optical Microscopes
73(4)
3.2.2 Scanning Probe Microscopes
77(1)
3.2.3 Electron Microscope
78(5)
3.3 Fabrication Techniques in Micro-Nano Scale
83(7)
3.3.1 Photolithography
83(2)
3.3.2 Electron-Beam-Induced Fabrication System
85(3)
3.3.3 Focused Ion Beam System
88(1)
3.3.4 Nano-imprinting System
89(1)
3.3.5 Self-Assembly Techniques
90(1)
3.4 Sensing and Actuation in Micro-Nano Scale
90(4)
3.4.1 Sensing in Micro-Nano Scale
90(2)
3.4.2 Actuation in Micro-Nano Scale
92(2)
3.5 Control Techniques in Micro-Nano Scale
94(4)
3.5.1 Master-Slave Control System for Micro-Nano Manipulation
95(2)
3.5.2 Control of Master-Slave Control System for Laser Manipulation
97(1)
3.6 Assembly Techniques in Micro-Nano Scale
98(9)
3.6.1 2D Assembly Technique in Micro-Nano Scale
98(1)
3.6.2 3D Assembly Technique in Micro-Nano Scale
99(1)
References
100(7)
4 Micromanipulation System under Optical Microscope
107(30)
4.1 Biomicromanipulation Methods for On-Chip Cell Experiments
107(6)
4.2 Multiple Trapping by Optical Tweezers
113(7)
4.2.1 Time Shared Scanning (TSS) Laser Trapping System
113(4)
4.2.2 Computer Generated Hologram (CGH) method
117(3)
4.3 Configurations of Micro-Fluidics Chips
120(2)
4.4 Non-contact Manipulation with Micro-tool
122(7)
4.4.1 Roles of Micro-tool for On-Chip Cell Experiment System
123(2)
4.4.2 On-Chip Cell Experiment System with Non-contact Manipulation of Micro-tool
125(1)
4.4.3 Reversible Injection Method of Microtool by Dielectrophoretic Floating of Microtool
126(3)
4.5 Micro-tools for Lasermicromanipulations
129(8)
References
134(3)
5 Rotational Speed Control of Single Bacterial Flagellar Motor
137(26)
5.1 Background of Rotational Speed Control of Single Bacterial Flagellar Motor
137(3)
5.1.1 Conventional Works
137(1)
5.1.2 Principal of Flagellar Motor
137(1)
5.1.3 Research Goal of Micro-Nanorobots Using Flagellar Motor
138(1)
5.1.4 Driving Force Generated by Flagellum
139(1)
5.2 Experimental Set-Up for Rotational Speed Control of Single Bacterial Flagellar Motor
140(8)
5.2.1 Switching Discharge between Micro-Nano Dual Pipettes
141(3)
5.2.2 Simultaneous Discharge from Micro-Nano Dual Pipettes
144(1)
5.2.3 Upgrade of Micro-Nano Dual Pipettes System
144(1)
5.2.4 Concept of Simultaneous Discharge
145(1)
5.2.5 Automation of Voltage Control and Synchronization with Video
146(1)
5.2.6 Hardware Configuration
146(1)
5.2.7 Rotational Speed Control of Bacterial Flagellar Motor
147(1)
5.3 Rotational Speed Measurement of Flagellar Motor
148(7)
5.3.1 Bacterial Strain
148(1)
5.3.2 Experimental Set-Up for Rotational Speed Measurement of Flagellar Motor
149(1)
5.3.3 Experimental Results of Rotational Speed Measurement of Flagellar Motor
150(3)
5.3.4 Discussions of Rotational Speed Measurement of Flagellar Motor
153(2)
5.4 Steady-State Control of Rotational Speed of Flagellar Motor
155(8)
5.4.1 Experimental Set-up for Steady-State Control of Rotational Speed of Flagellar Motor
155(2)
5.4.2 Experimental Results of Steady-State Control of Rotational Speed of Flagellar Motor
157(1)
5.4.3 Estimation of Torque Generated by Flagellar Motor
158(1)
References
159(4)
6 Nanomanipulation System under Electron Microscope
163(34)
6.1 Configuration of Nanomanipulation System
163(1)
6.2 Nanorobotic Manipulation System Inside SEM
163(9)
6.2.1 Design of Nanorobotic Manipulation System Inside SEM
163(2)
6.2.2 Link Coordination of Nanorobotic Manipulation System Inside SEM
165(6)
6.2.3 Configuration of Control System of Nanorobotic Manipulation System Inside SEM
171(1)
6.3 Hybrid Nanorobotic Manipulation System Inside SEM/TEM
172(9)
6.4 Nanorobotic Manipulation System Inside E-SEM
181(4)
6.4.1 Design of Nanorobotic Manipulation System Inside E-SEM
182(1)
6.4.2 Link Coordination of Nanorobotic Manipulation System Inside E-SEM
183(2)
6.5 Hybrid Microscope
185(3)
6.6 Nano-tool Exchanger System under Hybrid Microscope
188(2)
6.7 Automation of Nanorobotic Manipulation System Inside E-SEM
190(7)
References
195(2)
7 Measurement/Manipulation/Assembly of Carbon Nanotubes under FE-SEM/TEM
197(46)
7.1 Application Fields of Nanomanipulation System under FE-SEM/TEM
197(1)
7.2 Mechanical Evaluation of Carbon Nanotubes
197(4)
7.3 Deposition Using Carbon Nanotube Emitters
201(19)
7.4 3D Assembly of Carbon Nanotube
220(10)
7.5 Nano-actuator Using Telescoping Carbon Nanotube
230(13)
References
237(6)
8 Biological Cell Manipulation/Measurement/Analysis under E-SEM
243(84)
8.1 Application Fields of Nano-manipulation System under E-SEM
243(1)
8.2 Single Cell Nano-surgery System Using Nano-tools
243(1)
8.3 Observation of Biological Cells by E-SEM
243(3)
8.3.1 Preparing the W303 Wild-Type Yeast Cells for E-SEM Observation
244(1)
8.3.2 Qualitative Evaluation of-Cell Survivability of W303 Cells under E-SEM Observation
245(1)
8.4 Mechanical Property Characterization of Single Cell Using Nanotools
246(32)
8.4.1 Nanoindentation Process
246(2)
8.4.2 Force Measurement Using AFM Cantilever
248(1)
8.4.3 Determination of the Cantilever Deflection via Angular Deflection
249(3)
8.4.4 Calibration of the Spring Constant of the AFM Cantilever
252(5)
8.4.5 Modeling of Single Cell Stiffness
257(5)
8.4.6 Fabrication of Nanoprobe
262(2)
8.4.7 Measurement of Single Cell Stiffness by E-SEM Nanomanipulation
264(14)
8.5 Viscoelastic Measurement of Single Cell Using Sharp, Flat and Bucking Tips Inside E-SEM
278(13)
8.5.1 Modeling for Viscoelastic Measurement of Single Cell
280(5)
8.5.2 Fabrication and Calibration of Nanoprobe for Viscoelastic Measurement of Single Cell
285(2)
8.5.3 Viscoelastic Measurement of Single Cell by E-SEM Nanomanipulation
287(4)
8.6 Single Cell Adhesion Force Measurement Using Nanofork
291(8)
8.6.1 Fabrication and Calibration of Nanoprobe and Line-Patterned Substrate for Viscoelastic Measurement of Single Cell
293(3)
8.6.2 Experimental Result of Adhesion Measurement of Single Cells by Nanofork
296(3)
8.7 Dynamic Single Cell-Cell Adhesion Force Measurement Using Nanopicker
299(8)
8.7.1 Preparation of a Micro Probe
301(1)
8.7.2 Cell Transfer by the Micro Probe
302(3)
8.7.3 Results and Discussion
305(2)
8.8 Electrical Measurement of Single Cell Using Dual Nanoprobe
307(5)
8.8.1 Analysis of the Single Cells Electrical Measurement Using Dual Nanoprobe
307(2)
8.8.2 Fabrication of the Dual Nanoprobe
309(2)
8.8.3 Electrical Measurement of Dead Cells under HV Mode
311(1)
8.9 Automation System of Single Cell Analysis Using Nanotools
312(4)
8.9.1 Image Processing
313(2)
8.9.2 Experiment Result
315(1)
8.10 Local Measurement and Injection to C. elegans Using Nanotools
316(11)
8.10.1 Direct Observation of C. elegans by E-SEM
316(1)
8.10.2 Viability Test of C. elegance though E-SEM
317(1)
8.10.3 Local Stiffness Evaluation of C. elegans Using Nanoprobe Inside E-SEM
318(2)
8.10.4 Local Injection into C. elegans Using Nanoprobe Inside E-SEM
320(1)
References
321(6)
9 Conclusion
327(4)
9.1 Summary
327(1)
9.2 Future Aspects
328(3)
Subject Index 331