Preface |
|
xiii | |
Acknowledgments |
|
xv | |
The Author |
|
xvii | |
|
|
1 | (26) |
|
1.1 Driving-Point and Transfer Functions |
|
|
1 | (1) |
|
|
2 | (3) |
|
|
5 | (1) |
|
1.4 Operational Amplifier (Opamp) in Negative Feedback |
|
|
6 | (3) |
|
|
9 | (3) |
|
|
12 | (2) |
|
|
14 | (2) |
|
|
16 | (3) |
|
1.8.1 Linear Range Improvement |
|
|
18 | (1) |
|
1.9 Left-Half or Right-Half Plane Zero |
|
|
19 | (3) |
|
1.10 Stability of Feedback Amplifiers |
|
|
22 | (5) |
|
1.10.1 Frequency-Dependent Feedback Factor |
|
|
22 | (5) |
|
|
27 | (34) |
|
2.1 Abstract Low-Frequency Model of Transistors |
|
|
27 | (5) |
|
|
27 | (1) |
|
|
28 | (1) |
|
2.1.3 Transconductance gm and Output Resistance ro |
|
|
29 | (1) |
|
|
30 | (1) |
|
|
31 | (1) |
|
2.2 Driving-Point Resistances at Low Frequencies |
|
|
32 | (2) |
|
2.3 Resistance Reflection Rules |
|
|
34 | (5) |
|
2.3.1 Local Shunt Feedback |
|
|
37 | (2) |
|
2.4 Three Basic Amplifier Configurations |
|
|
39 | (2) |
|
2.5 Nine Amplifier Combinations |
|
|
41 | (5) |
|
|
41 | (1) |
|
|
41 | (3) |
|
|
44 | (1) |
|
2.5.4 CG-CS, CG-CG, CG-CD |
|
|
44 | (1) |
|
|
45 | (1) |
|
|
45 | (1) |
|
|
46 | (1) |
|
|
46 | (2) |
|
2.6.1 Common-Mode Rejection |
|
|
46 | (1) |
|
2.6.2 Symmetric Transfer Function |
|
|
47 | (1) |
|
|
48 | (3) |
|
2.7.1 Doublet Constraints |
|
|
49 | (1) |
|
2.7.2 Other Gain-Boosting Concepts |
|
|
50 | (1) |
|
|
51 | (3) |
|
2.8.1 Cascode Biasing for Maximum Swing |
|
|
52 | (1) |
|
2.8.2 Current Source Matching |
|
|
53 | (1) |
|
2.9 Voltage and Current Sources |
|
|
54 | (7) |
|
2.9.1 VGS and ΔVGS-Referenced Current Sources |
|
|
54 | (1) |
|
|
55 | (4) |
|
|
59 | (2) |
|
3 Operational Amplifier (Opamp) |
|
|
61 | (34) |
|
3.1 Small-Signal Model of the Operational Amplifier |
|
|
61 | (3) |
|
3.2 Opamp Frequency Compensation |
|
|
64 | (5) |
|
|
64 | (1) |
|
3.2.2 Pole-Splitting Miller Compensation |
|
|
65 | (4) |
|
3.3 Phase Margin of Two-Stage Miller-Compensated Opamps |
|
|
69 | (1) |
|
3.4 Right-Half Plane Zero Cancellation in Two-Stage Opamps |
|
|
70 | (3) |
|
3.4.1 Inserting a Series Resistance |
|
|
71 | (1) |
|
3.4.2 Using Source Follower for Feedback |
|
|
72 | (1) |
|
3.4.3 Boosting Gm with Extra Gain Stage |
|
|
73 | (1) |
|
3.5 Transient Response of Opamp in Feedback |
|
|
73 | (4) |
|
|
74 | (1) |
|
3.5.2 Maximum Power Bandwidth |
|
|
75 | (2) |
|
3.6 Opamp Design Examples |
|
|
77 | (5) |
|
3.6.1 Telescopic Triple Cascode Opamp |
|
|
77 | (2) |
|
3.6.2 Folded-Cascode Opamp |
|
|
79 | (1) |
|
3.6.3 Gain-Boosted Cascode Opamp |
|
|
80 | (1) |
|
|
81 | (1) |
|
|
82 | (3) |
|
3.7.1 Common-Mode Loop Requirements |
|
|
83 | (1) |
|
3.7.2 Continuous-Time Common-Mode Feedback |
|
|
84 | (1) |
|
|
85 | (3) |
|
3.9 Opamp Input Capacitance |
|
|
88 | (1) |
|
|
89 | (2) |
|
|
91 | (2) |
|
3.12 Opamp Common-Mode Rejection |
|
|
93 | (2) |
|
|
94 | (1) |
|
|
95 | (50) |
|
4.1 Analog-to-Digital Converter Basics |
|
|
95 | (9) |
|
4.1.1 Aliasing by Sampling |
|
|
95 | (1) |
|
|
95 | (3) |
|
4.1.3 Signal-to-Noise Ratio |
|
|
98 | (2) |
|
4.1.4 Differential and Integral Nonlinearity |
|
|
100 | (1) |
|
4.1.5 DNL-Related Low-Level Distortion |
|
|
101 | (2) |
|
4.1.6 Nyquist-Rate Sampling versus Oversampling |
|
|
103 | (1) |
|
|
104 | (13) |
|
4.2.1 Charge Injection and Clock Feed-Through |
|
|
106 | (1) |
|
4.2.2 Nonlinearity of Sampling Switch |
|
|
107 | (1) |
|
4.2.3 Bottom-Plate Sampling |
|
|
108 | (2) |
|
|
110 | (3) |
|
4.2.5 Clock Feed-Through Effect on Offset |
|
|
113 | (1) |
|
4.2.6 kT/C Noise and Clock Jitter |
|
|
114 | (3) |
|
4.3 Flash Analog-to-Digital Converter |
|
|
117 | (3) |
|
4.3.1 Kickback and Sparkle Noise |
|
|
118 | (2) |
|
|
120 | (6) |
|
|
120 | (3) |
|
|
123 | (2) |
|
|
125 | (1) |
|
|
126 | (3) |
|
4.5.1 ADC Figure of Merit |
|
|
129 | (1) |
|
4.6 Averaging and Interpolation Techniques |
|
|
129 | (5) |
|
|
129 | (2) |
|
|
131 | (3) |
|
4.7 Low-Voltage Circuit Techniques |
|
|
134 | (4) |
|
4.7.1 Low Bound of Analog Supply |
|
|
134 | (2) |
|
4.7.2 Switched-Opamp Technique |
|
|
136 | (1) |
|
4.7.3 Current-Mode Circuits |
|
|
136 | (2) |
|
4.8 Digital-to-Analog Converter Basics |
|
|
138 | (7) |
|
4.8.1 DAC Accuracy Considerations |
|
|
139 | (1) |
|
|
139 | (2) |
|
4.8.3 Code-Dependent Time Constant |
|
|
141 | (1) |
|
|
141 | (1) |
|
|
142 | (1) |
|
|
142 | (3) |
|
5 Nyquist-Rate Data Converters |
|
|
145 | (54) |
|
5.1 Analog-to-Digital Converter Architectures |
|
|
145 | (2) |
|
|
147 | (2) |
|
5.3 Successive Approximation Register ADC |
|
|
149 | (5) |
|
5.3.1 Accuracy Considerations |
|
|
151 | (1) |
|
5.3.2 SAR ADC with R + C, C + R, or C + C Combination Digital-to-Analog Converter |
|
|
151 | (3) |
|
5.4 Subranging and Multistep ADC |
|
|
154 | (3) |
|
|
154 | (2) |
|
5.4.2 Evolution of Multistep and Pipeline Architectures |
|
|
156 | (1) |
|
|
157 | (20) |
|
|
158 | (1) |
|
5.5.2 Capacitor-Array Multiplying DAC |
|
|
159 | (2) |
|
5.5.3 Accuracy Considerations |
|
|
161 | (1) |
|
|
162 | (2) |
|
5.5.5 Generalized N-Bit Pipeline Stage |
|
|
164 | (1) |
|
5.5.6 Trilevel Multiplying Digital-to-Analog Converter (MDAC) |
|
|
165 | (4) |
|
|
169 | (1) |
|
5.5.8 Opamp Gain Requirement |
|
|
170 | (2) |
|
5.5.9 Opamp Bandwidth Requirement |
|
|
172 | (2) |
|
5.5.10 Noise Considerations |
|
|
174 | (1) |
|
5.5.11 Optimum Number of Bits per Stage |
|
|
174 | (1) |
|
5.5.12 Scaling Pipelined ADC |
|
|
175 | (1) |
|
5.5.13 S/H-Free Pipelined ADC |
|
|
176 | (1) |
|
|
177 | (6) |
|
5.6.1 Accuracy Considerations |
|
|
179 | (2) |
|
|
181 | (2) |
|
|
183 | (9) |
|
|
183 | (1) |
|
5.7.2 Time-Interleaving ADC |
|
|
184 | (3) |
|
|
187 | (2) |
|
5.7.4 Dynamic Low-Voltage Low-Power Design |
|
|
189 | (1) |
|
|
190 | (2) |
|
|
192 | (7) |
|
5.8.1 Resistor-String DAC |
|
|
192 | (2) |
|
5.8.2 Current-Steering DAC |
|
|
194 | (1) |
|
5.8.3 Segmented DAC for Monotonicity |
|
|
195 | (1) |
|
|
196 | (3) |
|
6 Oversampling Data Converters |
|
|
199 | (56) |
|
6.1 Concept of Quantizer in Feedback |
|
|
199 | (6) |
|
6.1.1 Active Filter by Feedback |
|
|
199 | (2) |
|
|
201 | (1) |
|
6.1.3 Quantization Noise Shaping |
|
|
201 | (2) |
|
6.1.4 Loop Filter and Bandwidth Requirements |
|
|
203 | (2) |
|
|
205 | (7) |
|
6.2.1 Quantization Error Estimation |
|
|
206 | (1) |
|
6.2.2 Quantization Noise Shaping |
|
|
207 | (1) |
|
6.2.3 Signal-to-Quantization Noise |
|
|
208 | (1) |
|
6.2.4 Stability and Integrator Overload |
|
|
209 | (3) |
|
6.3 High-Order Architectures |
|
|
212 | (4) |
|
6.3.1 Direct Multiloop Feedback |
|
|
212 | (1) |
|
6.3.2 Single-Loop Feedback |
|
|
213 | (2) |
|
6.3.3 Cascaded Modulators |
|
|
215 | (1) |
|
6.4 Discrete-Time (DT) versus Continuous-Time (CT) Modulators |
|
|
216 | (1) |
|
6.5 Discrete-Time Modulator Design |
|
|
217 | (10) |
|
6.5.1 Switched-Capacitor Integrators |
|
|
217 | (3) |
|
6.5.2 Multibit Integrator versus Multiplying Digital-to-Analog Converter |
|
|
220 | (1) |
|
6.5.3 Multilevel Feedback Digital-to-Analog Converters |
|
|
221 | (2) |
|
6.5.4 Design Considerations |
|
|
223 | (1) |
|
6.5.5 Broadband Modulators |
|
|
224 | (3) |
|
6.6 Band-Pass Modulator Design |
|
|
227 | (3) |
|
6.7 Continuous-Time Modulator Design |
|
|
230 | (19) |
|
6.7.1 Continuous-Time Δ Modulator |
|
|
230 | (1) |
|
6.7.2 Built-in Anti-Aliasing and Blocker Filtering |
|
|
230 | (2) |
|
6.7.3 DAC Pulse Position and Pulse Width Jitters |
|
|
232 | (2) |
|
6.7.4 Current DAC versus Switched-Capacitor DAC |
|
|
234 | (2) |
|
6.7.5 Integrators for SC-DAC |
|
|
236 | (1) |
|
6.7.6 Quantizer Meta-Stability |
|
|
237 | (1) |
|
6.7.7 CT Modulator Architectures |
|
|
238 | (2) |
|
6.7.8 Integrator Design Considerations |
|
|
240 | (1) |
|
|
241 | (1) |
|
|
241 | (3) |
|
6.7.11 Feedback Path Design |
|
|
244 | (1) |
|
6.7.12 Filter Time-Constant Calibration |
|
|
245 | (4) |
|
6.8 Interpolative Oversampling DAC |
|
|
249 | (6) |
|
6.8.1 Δ Modulator as Digital Truncator |
|
|
249 | (1) |
|
6.8.2 One-Bit or Multibit DAC |
|
|
250 | (1) |
|
6.8.3 Monotonic Oversampling Bitstream DAC |
|
|
251 | (1) |
|
6.8.4 Postfiltering Requirement |
|
|
251 | (1) |
|
|
252 | (3) |
|
7 High-Resolution Data Converters |
|
|
255 | (56) |
|
7.1 Nonlinearity of the Analog-to-Digital Converter |
|
|
255 | (4) |
|
7.1.1 Inaccurate Residue in Pipelined Analog-to-Digital Converters |
|
|
256 | (1) |
|
7.1.2 Missing Codes and Nonmonotonicity |
|
|
257 | (2) |
|
7.2 Evolution of High-Resolution ADC Design |
|
|
259 | (4) |
|
7.2.1 Device and Supply Voltage Scaling |
|
|
259 | (1) |
|
7.2.2 Broadband High Spurious-Free Dynamic Range Applications |
|
|
259 | (1) |
|
7.2.3 High-Resolution ADC Techniques |
|
|
260 | (1) |
|
7.2.4 Inherently Linear Analog Techniques |
|
|
261 | (1) |
|
7.2.5 Self-Calibration of Successive Approximation Register ADC |
|
|
262 | (1) |
|
7.3 Digital Calibration of ADC |
|
|
263 | (5) |
|
7.3.1 Digital Calibration Concept |
|
|
264 | (1) |
|
7.3.2 Multiplying Digital-to-Analog Converter Capacitor Error Calibration |
|
|
264 | (2) |
|
7.3.3 Linear MDAC Gain Error Calibration |
|
|
266 | (1) |
|
7.3.4 MDAC Gain Nonlinearity Calibration |
|
|
267 | (1) |
|
7.4 Digital Background Calibration |
|
|
268 | (10) |
|
7.4.1 Background Capacitor Error Measurement |
|
|
270 | (1) |
|
7.4.2 Gain Error Measurement by Pseudo-Random Dithering |
|
|
271 | (3) |
|
7.4.3 Constraints in PN Dithering |
|
|
274 | (1) |
|
7.4.4 Signal-Dependent PN Dithering |
|
|
274 | (4) |
|
7.5 Digital Processing for Gain Nonlinearity |
|
|
278 | (6) |
|
7.5.1 Weakly Nonlinear Gain Error |
|
|
278 | (1) |
|
7.5.2 Gain Nonlinearity Measurement by PN Dithering |
|
|
279 | (1) |
|
7.5.3 Measurement by Signal Correlation |
|
|
280 | (1) |
|
7.5.4 Multilevel PN Dithering |
|
|
281 | (1) |
|
7.5.5 Accuracy Considerations for Background Error Measurement |
|
|
281 | (3) |
|
7.6 Calibration by Zero-Forcing Least-Mean-Square Feedback |
|
|
284 | (4) |
|
7.6.1 LMS Feedback Concept |
|
|
284 | (1) |
|
|
284 | (2) |
|
7.6.3 LMS Adaptation for Digital Background Calibration |
|
|
286 | (2) |
|
7.7 Calibration of Time-Interleaving ADC |
|
|
288 | (3) |
|
|
288 | (1) |
|
|
289 | (1) |
|
|
289 | (2) |
|
7.8 Calibrated Continuous-Time (CT) Δ Modulators |
|
|
291 | (14) |
|
7.8.1 Pipeline versus Continuous-Time Δ Modulator |
|
|
291 | (1) |
|
7.8.2 Noise Leakage in CT Cascaded Δ Modulator |
|
|
292 | (1) |
|
7.8.3 Continuous-Time to Discrete-Time Transform |
|
|
293 | (1) |
|
7.8.4 CT-to-DT Transform of Integrators |
|
|
294 | (1) |
|
7.8.5 CT-to-DT Transform of Resonators |
|
|
295 | (2) |
|
7.8.6 Half-Cycle Delay Effect |
|
|
297 | (1) |
|
7.8.7 Noise Transfer Function (NTF) for Single-Loop CT Δ Modulator |
|
|
298 | (2) |
|
7.8.8 NCF for CT Cascaded Δ Modulator |
|
|
300 | (1) |
|
7.8.9 STF and Built-In Anti-Aliasing in Cascaded CT-DSM |
|
|
301 | (1) |
|
7.8.10 Noise Leakage Cancellation in CT Cascaded Modulators |
|
|
302 | (1) |
|
7.8.11 Operational Amplifier Finite DC Gain and Bandwidth Effect |
|
|
303 | (2) |
|
7.9 Calibration of Current-Steering DAC |
|
|
305 | (6) |
|
7.9.1 Static DAC Nonlinearity Error |
|
|
305 | (1) |
|
7.9.2 Dynamic DAC Nonlinearity Error |
|
|
306 | (1) |
|
|
307 | (1) |
|
|
308 | (3) |
|
8 Phase-Locked Loop Basics |
|
|
311 | (56) |
|
|
311 | (7) |
|
8.1.1 Jitter versus Integrated Root-Mean-Square Phase Noise |
|
|
312 | (1) |
|
8.1.2 Amplitude-Modulation to Phase-Modulation Conversion |
|
|
313 | (1) |
|
8.1.3 Voltage-Controlled Oscillator Phase Noise |
|
|
313 | (2) |
|
8.1.4 Single-Sideband (SSB) and Double-Sideband (DSB) Phase Noises |
|
|
315 | (2) |
|
8.1.5 Effect of Frequency Division on Phase Noise |
|
|
317 | (1) |
|
8.2 Phase-Locked Loop Operation |
|
|
318 | (7) |
|
8.2.1 Linear Model of PLL |
|
|
319 | (1) |
|
|
320 | (3) |
|
8.2.3 Stability of Second-Order PLL |
|
|
323 | (1) |
|
8.2.4 Loop Filter with a Pole and a Zero |
|
|
324 | (1) |
|
8.3 Phase Noise Transfer Function |
|
|
325 | (6) |
|
8.3.1 SSB Phase Noise Effect on Blocker |
|
|
327 | (1) |
|
8.3.2 Integrated Root-Mean-Square Phase Noise Effect on Phase Modulation and Frequency Modulation |
|
|
328 | (2) |
|
8.3.3 PLL as FM Demodulator |
|
|
330 | (1) |
|
|
331 | (4) |
|
8.4.1 Multiplier as Phase Detector |
|
|
331 | (2) |
|
8.4.2 Up/Down State Machine as Phase Detector |
|
|
333 | (1) |
|
8.4.3 Phase Frequency Detector |
|
|
334 | (1) |
|
8.5 Charge-Pumped Phase-Locked Loop |
|
|
335 | (6) |
|
8.5.1 Stability of Charge-Pumped PLL |
|
|
336 | (1) |
|
8.5.2 Loop Filter of Charge-Pumped PLL |
|
|
336 | (2) |
|
|
338 | (2) |
|
8.5.4 Charge-Pump Circuits |
|
|
340 | (1) |
|
8.6 PLL Bandwidth Constraints |
|
|
341 | (4) |
|
8.6.1 Capture and Lock-In Ranges |
|
|
342 | (1) |
|
8.6.2 Settling Requirement |
|
|
343 | (1) |
|
8.6.3 PLL versus Second-Order Δ Modulator |
|
|
344 | (1) |
|
|
345 | (12) |
|
8.7.1 LC Components in CMOS |
|
|
345 | (2) |
|
8.7.2 Oscillation Condition for LC VCO |
|
|
347 | (2) |
|
8.7.3 Phase Noise of LC VCO |
|
|
349 | (3) |
|
8.7.4 1/f Noise Up-Conversion |
|
|
352 | (1) |
|
8.7.5 Low Phase Noise Design for LC VCO |
|
|
353 | (1) |
|
8.7.6 Current versus Voltage Limiting |
|
|
354 | (2) |
|
8.7.7 Other Noise Sources in PLL |
|
|
356 | (1) |
|
8.8 Low-Q Ring-Oscillator VCO |
|
|
357 | (7) |
|
8.8.1 Oscillation Condition for Ring-Oscillator VCO |
|
|
357 | (1) |
|
8.8.2 Phase Noise of Ring-Oscillator VCO |
|
|
358 | (2) |
|
8.8.3 Q Effect on VCO Phase Noise |
|
|
360 | (1) |
|
8.8.4 Low Phase Noise Design for Ring-Oscillator VCO |
|
|
361 | (3) |
|
|
364 | (3) |
|
|
365 | (1) |
|
|
366 | (1) |
|
9 Frequency Synthesis and Clock Recovery |
|
|
367 | (38) |
|
9.1 Phase-Locked Loop Applications |
|
|
367 | (2) |
|
9.1.1 General Clock Generation |
|
|
368 | (1) |
|
9.1.2 Low-Jitter Clock Generation |
|
|
368 | (1) |
|
|
369 | (2) |
|
9.2.1 Time-to-Digital Converter |
|
|
370 | (1) |
|
|
371 | (9) |
|
9.3.1 Integer-N versus Fractional-N Synthesizers |
|
|
372 | (1) |
|
|
373 | (2) |
|
9.3.3 Spur Cancellation by Digital-to-Analog Converter |
|
|
375 | (1) |
|
9.3.4 Spur Shaping by Δ Divider-Ratio Modulator |
|
|
375 | (3) |
|
9.3.5 Phase-Frequency Detector/Charge-Pump Nonlinearity |
|
|
378 | (1) |
|
9.3.6 Bandwidth Constraint of Fractional-N Synthesizers |
|
|
379 | (1) |
|
9.4 Spur-Canceled Fractional-AT Frequency Synthesizer |
|
|
380 | (9) |
|
9.4.1 DAC-Based Spur Cancellation |
|
|
380 | (3) |
|
9.4.2 Adaptive DAC Gain Calibration |
|
|
383 | (1) |
|
9.4.3 Minimum DAC Pulse Width |
|
|
384 | (1) |
|
9.4.4 Quantization Noise of the Spur-Canceling DAC |
|
|
385 | (1) |
|
9.4.5 Sign-Sign LMS Algorithm |
|
|
386 | (1) |
|
9.4.6 Δ Divider Ratio Modulator |
|
|
386 | (2) |
|
9.4.7 Calibration of VCO Frequency |
|
|
388 | (1) |
|
|
389 | (4) |
|
|
390 | (1) |
|
9.5.2 Binary Pulse Symbol |
|
|
391 | (2) |
|
9.6 Data Channel Equalization |
|
|
393 | (4) |
|
|
393 | (1) |
|
9.6.2 Decision-Feedback Equalizer |
|
|
394 | (1) |
|
9.6.3 Zero versus Cosine Equalizers |
|
|
395 | (2) |
|
9.7 Clock and Data Recovery |
|
|
397 | (4) |
|
9.7.1 CDR with Band-Pass Filter |
|
|
398 | (1) |
|
9.7.2 Oversampling Digital CDR |
|
|
399 | (1) |
|
9.7.3 Delay-Locked Loop for CDR |
|
|
399 | (1) |
|
|
400 | (1) |
|
|
401 | (4) |
|
|
403 | (2) |
Index |
|
405 | |