Muutke küpsiste eelistusi

E-raamat: Microstrip Lines and Slotlines, Third Edition

  • Formaat: 594 pages
  • Ilmumisaeg: 31-Jan-2013
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608075362
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 87,75 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 594 pages
  • Ilmumisaeg: 31-Jan-2013
  • Kirjastus: Artech House Publishers
  • ISBN-13: 9781608075362
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Since the second edition of this book was published in 1996, planar transmission line technology has progressed considerably due to developments in ultrawideband (UWB) communications, imaging, and RFID applications. In addition, the simultaneous demands for compactness of wireless electronic devices while meeting improved performance requirements, necessitates increased use of computer-aided design, simulation, and analysis by microwave engineers. This book is written to help engineers successfully meet these challenges. It covers the development of governing equations, basis functions, Green's function and typical results. It details the use of simulation software in the design of complex devices and understanding the connection between data collected from simulation software and the actual design process. It includes over 1,200 equations.
Preface xi
Chapter 1 Microstrip Lines I: Quasi-Static Analyses, Dispersion Models, and Measurements
1(58)
1.1 Introduction
1(4)
1.1.1 Planar Transmission Structures
1(2)
1.1.2 Microstrip Field Configuration
3(1)
1.1.3 Methods of Microstrip Analysis
4(1)
1.2 Quasi-Static Analyses of a Microstrip
5(16)
1.2.1 Modified Conformal Transformation Method
6(5)
1.2.2 Finite Difference Method
11(1)
1.2.3 Integral Equation Method
12(2)
1.2.4 Variational Method in the Fourier Transform Domain
14(2)
1.2.5 Segmentation and Boundary Element Method (SBEM)
16(5)
1.3 Microstrip Dispersion Models
21(8)
1.3.1 Coupled TEM Mode and TM Mode Model
21(1)
1.3.2 An Empirical Relation
22(1)
1.3.3 Dielectric-Loaded Ridged Waveguide Model
22(2)
1.3.4 Empirical Formulae for Broad Frequency Range
24(2)
1.3.5 Planar Waveguide Model
26(1)
1.3.6 Some Comments
27(2)
1.4 Microstrip Transitions
29(6)
1.4.1 Coaxial-to-Microstrip Transition
30(1)
1.4.2 Waveguide-to-Microstrip Transition
31(4)
1.5 Microstrip Measurements
35(11)
1.5.1 Substrate Dielectric Constant
36(5)
1.5.2 Characteristic Impendance
41(1)
1.5.3 Phase Velocity or Effective Dielectric Constant
42(3)
1.5.4 Attenuation Constant
45(1)
1.6 Fabrication
46(13)
1.6.1 Printed Circuit Technologies
47(1)
1.6.2 Hybrid Microwave Integrated Circuits
48(3)
1.6.3 Monolithic Integrated Circuit Technologies
51(2)
References
53(6)
Chapter 2 Microstrip Lines II: Fullwave Analyses, Design Considerations, and Applications
59(80)
2.1 Methods of Fullwave Analysis
59(1)
2.2 Analysis of an Open Microstrip
60(8)
2.2.1 Integral Equation Method in the Space Domain
62(2)
2.2.2 Galerkin's Method in the Spectral Domain
64(1)
2.2.3 Discussion of Results
65(3)
2.3 Analysis of an Enclosed Microstrip
68(9)
2.3.1 Integral Equation Methods
69(4)
2.3.2 Finite Difference Method
73(2)
2.3.3 Discussion of Results
75(2)
2.4 Design Considerations
77(32)
2.4.1 Microstrip Losses
78(4)
2.4.2 Power Handling Capability
82(7)
2.4.3 Effect of Tolerances
89(2)
2.4.4 Effect of Dielectric Anisotropy
91(3)
2.4.5 Design Equations
94(9)
2.4.6 Frequency Range of Operation
103(3)
2.4.7 Lumped Element Model of Microstrip Interconnect
106(3)
2.5 Other Types of Microstrip Lines
109(14)
2.5.1 Suspended and Inverted Microstrip Lines
109(1)
2.5.2 Multilayered Dielectric Microstrip
110(4)
2.5.3 Thin Film Microstrip (TFM)
114(2)
2.5.4 Valley Microstrip Lines
116(1)
2.5.5 Buried Microstrip Line
117(1)
2.5.6 Superconducting Microstrip Circuits
117(6)
2.6 Microstrip Applications
123(16)
2.6.1 Lumped Elements
123(3)
2.6.2 Passive Components
126(3)
2.6.3 Active Components
129(1)
2.6.4 Packages and Assemblies
130(1)
References
131(8)
Chapter 3 Microstrip Discontinuities I: Quasi-Static Analysis and Characterization
139(50)
3.1 Introduction
139(1)
3.2 Discontinuity Capacitance Evaluation
140(14)
3.2.1 Matrix Inversion Method
141(5)
3.2.2 Variational Method
146(3)
3.2.3 Galerkin's Method in the Fourier Transform Domain
149(2)
3.2.4 Use of Line Sources with Charge Reversal
151(3)
3.3 Discontinuity Inductance Evaluation
154(2)
3.4 Characterization of Various Discontinuities
156(24)
3.4.1 Open Ends
157(3)
3.4.2 Gaps in a Microstrip
160(5)
3.4.3 Steps in Width
165(4)
3.4.4 Bends
169(1)
3.4.5 T-Junctions
170(4)
3.4.6 Cross Junctions
174(2)
3.4.7 Notch
176(2)
3.4.8 RF Short and Via Hole
178(2)
3.5 Compensated Microstrip Discontinuities
180(9)
3.5.1 Step in Width
180(1)
3.5.2 Bends
181(1)
3.5.3 T-Junction
182(3)
References
185(4)
Chapter 4 Microstrip Discontinuities II: Fullwave Analysis and Measurements
189(50)
4.1 Planar Waveguide Analysis
189(29)
4.1.1 Discontinuity Characterization
189(19)
4.1.2 Compensation of Discontinuity Reactances
208(1)
4.1.3 Radiation and Parasitic Coupling
209(9)
4.2 Fullwave Analysis of Discontinuities
218(9)
4.2.1 Galerkin's Method in the Spectral Domain
219(3)
4.2.2 Integral Equation Solution in the Space Domain
222(1)
4.2.3 Time Domain Methods for Microstrip Discontinuity Characterization
223(4)
4.3 Discontinuity Measurements
227(12)
4.3.1 Linear Resonator Method
228(4)
4.3.2 Ring Resonator Method
232(3)
4.3.3 Scattering Parameters Measurement Method
235(1)
References
236(3)
Chapter 5 Slotlines
239(66)
5.1 Introduction
239(1)
5.2 Slotline Analysis
239(12)
5.2.1 Approximate Analysis
241(2)
5.2.2 Transverse Resonance Method
243(3)
5.2.3 Galerkin's Method in the Spectral Domain
246(5)
5.3 Design Considerations
251(7)
5.3.1 Closed-Form Expressions
251(3)
5.3.2 Effect of Metal Thickness
254(1)
5.3.3 Effect of Tolerances
255(1)
5.3.4 Losses in Slotline
256(2)
5.4 Slotline Discontinuities
258(4)
5.4.1 Short End Discontinuty
258(1)
5.4.2 Open End Discontinuity
259(3)
5.5 Variants of Slotline
262(6)
5.5.1 Coupled Microstrip-Slotline
262(1)
5.5.2 Conductor-Backed Slotline
263(3)
5.5.3 Conductor-Backed Slotline with Superstrate
266(1)
5.5.4 Slotlines with Double-Layered Dielectric
267(1)
5.6 Slotline Transitions
268(10)
5.6.1 Coaxial-to-Slotline Transition
268(3)
5.6.2 Microstrip-to-Slotline Cross-Junction Transition
271(7)
5.7 Slotline Applications
278(27)
5.7.1 Circuits Using T-Junctions
278(9)
5.7.2 Circuits Using Wideband 180° Phase Shift
287(2)
5.7.3 Hybrid/de Ronde's Branchline Couplers
289(7)
5.7.4 Other Types of Slotline Circuits
296(1)
References
297(8)
Chapter 6 Defected Ground Structure (DGS)
305(42)
6.1 Introduction
305(6)
6.1.1 Basic Structure of DGS
306(3)
6.1.2 Unit Cell and Periodic DGS
309(2)
6.1.3 Advantages and Disadvantages of DGS
311(1)
6.2 DGS Characteristics
311(9)
6.2.1 Stop-Band Properties
312(2)
6.2.2 Slow-Wave Propagation
314(5)
6.2.3 Realization of Transmission Lines with High Characteristic Impedance
319(1)
6.3 Modeling of DGS
320(6)
6.3.1 Full-Wave Modeling
320(1)
6.3.2 Equivalent Circuit Models
320(6)
6.4 Applications of DGS
326(21)
6.4.1 DGS-Based Filters
327(6)
6.4.2 Other DGS-Based Passive Components
333(5)
6.4.3 DGS-Based Active Circuits
338(2)
6.4.4 DGS-Based Antennas
340(3)
References
343(4)
Chapter 7 Coplanar Lines: Coplanar Waveguide and Coplanar Strips
347(86)
7.1 Introduction
347(4)
7.2 Analysis
351(29)
7.2.1 Quasi-Static Conformal Mapping Analysis of CPW
351(18)
7.2.2 Quasi-Static Conformal Mapping Analysis of CPS
369(6)
7.2.3 Fullwave Analysis
375(5)
7.3 Design Considerations
380(6)
7.3.1 Design Equations
381(1)
7.3.2 Dispersion
381(2)
7.3.3 Effect of Metallization Thickness
383(3)
7.4 Losses in Coplanar Lines
386(10)
7.4.1 Dielectric Loss
386(1)
7.4.2 Conductor Loss
387(6)
7.4.3 Radiation and Surface Wave Losses
393(3)
7.5 Effect of Tolerances
396(3)
7.6 Comparison with Microstrip Line and Slotline
399(2)
7.7 Transitions
401(9)
7.7.1 Coax-to-CPW Transitions
401(2)
7.7.2 Microstrip-to-CPS Transitions
403(2)
7.7.3 Microstrip-to-CPW Transition
405(1)
7.7.4 CPW-to-CPS Transitions
406(1)
7.7.5 CPS-to-Slotline Transitions
406(1)
7.7.6 Slotline-to-CPW Transitions
407(3)
7.8 Discontinuities in Coplanar Lines
410(7)
7.8.1 CAD Models for Discontinuities in Coplanar Waveguide Circuits
410(5)
7.8.2 CAD Models for Discontinuities in Coplanar Strips Circuits
415(2)
7.9 Coplanar Line Circuits
417(16)
7.9.1 Circuits with Series and Shunt Reactances in CPW
418(2)
7.9.2 Circuits Using Slotline-CPW Junctions
420(5)
References
425(8)
Chapter 8 Coupled Microstrip Lines
433(64)
8.1 Introduction
433(1)
8.2 General Analysis of Coupled Lines
434(8)
8.2.1 Methods of Analysis
434(1)
8.2.2 Coupled Mode Approach
435(4)
8.2.3 Even- and Odd-Mode Approach
439(3)
8.3 Characteristics of Coupled Microstrip Lines
442(17)
8.3.1 Quasi-Static Analysis
442(7)
8.3.2 Fullwave Analysis
449(7)
8.3.3 Dispersion Models
456(3)
8.4 Measurements on Coupled Microstrip Lines
459(2)
8.4.1 Impedance Measurements
459(1)
8.4.2 Phase Constant Measurements
460(1)
8.5 Design Considerations for Coupled Microstrip Lines
461(17)
8.5.1 Design Equations
462(7)
8.5.2 Losses
469(4)
8.5.3 Effect of Fabrication Tolerances
473(1)
8.5.4 Coupled Microstrip Lines with Dielectric Overlays
474(4)
8.5.5 Effect of Dielectric Anisotropy
478(1)
8.6 Slot-Coupled Microstrip Lines
478(5)
8.7 Coupled Multiconductor Microstrip Lines
483(2)
8.8 Discontinuities in Coupled Microstrip Lines
485(12)
8.8.1 Network Model
485(5)
8.8.2 Open-End Discontinuity
490(1)
References
491(6)
Chapter 9 Substrate Integrated Waveguide (SIW)
497(70)
9.1 Introduction
497(3)
9.1.1 Geometry
498(1)
9.1.2 Operation Principle
499(1)
9.2 Analysis Techniques of SIW
500(26)
9.2.1 Equivalent Rectangular Waveguide
500(3)
9.2.2 Full-wave Modeling of SIW Interconnects
503(10)
9.2.3 Full-wave Modeling of SIW Components
513(8)
9.2.4 Equivalent Circuits Models of SIW Discontinuities
521(5)
9.3 Design Considerations
526(7)
9.3.1 Mechanisms of Loss
526(5)
9.3.2 Guided-wave and Leaky-wave Regions of Operation
531(1)
9.3.3 Band-gap Effects in SIW Structures
532(1)
9.3.4 SIW Design Rules
533(1)
9.4 Other SIW Configurations
533(7)
9.4.1 Substrate Integrated Folded Waveguide (SIFW)
534(1)
9.4.2 Half-Mode Substrate Integrated Waveguide (HMSIW)
535(1)
9.4.3 Substrate Integrated Slab Waveguide (SISW)
536(2)
9.4.4 Substrate Integrated Ridge Waveguide (SIRW)
538(2)
9.5 Transitions Between SIW and Planar Transmission Lines
540(1)
9.5.1 Microstrip-to-SIW Transitions
540(1)
9.5.2 CPW-to-SIW Transitions
541(1)
9.6 SIW Components and Antennas
541(14)
9.6.1 Passive Components
543(4)
9.6.2 Active Circuits
547(3)
9.6.3 Antennas
550(3)
9.6.4 System-on-Substrate (SoS)
553(2)
9.7 Fabrication Technologies and Materials
555(12)
9.7.1 Fabrication by PCB and LTCC Technologies
555(2)
9.7.2 Integration of SIW on Silicon
557(1)
9.7.3 Use of Novel Substrate Materials
557(2)
9.7.4 Solutions for High Frequency Operation of SIW
559(1)
References
559(8)
About the Authors 567(2)
Index 569