Muutke küpsiste eelistusi

E-raamat: Mitochondrial Function In Vivo Evaluated by NADH Fluorescence

  • Formaat: PDF+DRM
  • Ilmumisaeg: 20-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319166827
  • Formaat - PDF+DRM
  • Hind: 159,93 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 20-Jun-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319166827

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book covers both the technological development and biomedical applications of NADH fluorescence. Topics covered include perspectives on the history of monitoring NADH fluorescence, the relationship between mitochondrial function and other functions at the tissue level, responses of NADH to physiological and pathophysiological conditions, monitoring of NADH in the human brain and other organs, and metabolism. It also includes an in-depth look at flavoprotein (Fp) fluorescence and NADH in relation to redox state. This is an ideal book for biomedical engineers, researchers, and graduate students interested in learning the biomedical applications of NADH fluorescence.

This book also:





Covers multisite monitoring of NADH, as well as multiparametric responses of NADH to physiological and pathophysiological conditions, and monitoring of various organs in various animal models Describes the relationship between brain activation (i.e. epileptic activity and cortical spreading depression) and NADH redox state Presents the effects of hypoxia,hyperbaric hyperoxia, and ischemia on brain NADH fluorescence and other tissue physiological parameters

 

About the Author

Avraham Mayevsky, Ph.D. is a Professor Emeritus in theFaculty of Life Sciences and the Brain Research Center at Bar Ilan University, Israel.

He has published  more than two hundred papers in the field of mitochondrial function and tissue physiology in vivo under pathophysiological conditions.

Arvustused

This is a great book conctning t history, physiology of multiple organs responses to normoxia, hypoxia, ischemic, hyperoxia, & hyperbaric conditions in anesthetized, awake, mammals including humans. I recommend this book for historians of Physiology, researchers in Neurology, neurosurgeons and students of Physiology. (Joseph J. Grenier, Amazon.com, November, 2015)

1 Introduction
1(6)
1.1 The Mitochondrion
1(2)
1.2 Collaboration of Avraham Mayevsky (A.M.) with Britton Chance (B.C.)
3(4)
References
5(2)
2 Tissue Energy Metabolism and Mitochondrial Function
7(8)
2.1 Tissue Energy Metabolism
7(1)
2.2 Evaluation of Mitochondrial Function In Vivo
8(7)
References
12(3)
3 Spectroscopic Monitoring of NADH: Historical Overview
15(28)
3.1 Introduction
15(1)
3.1.1 Historical Introduction: Written by Prof. Britton Chance in 2006 (The next three Paragraphs)
15(1)
3.2 Monitoring of NADH UV Absorbance
16(2)
3.3 Monitoring NADH Fluorescence
18(2)
3.4 Fluorescence Emission Spectra of NADH
20(6)
3.4.1 NADH Spectra in Solution
20(1)
3.4.2 NADH Spectra in Isolated Mitochondria
21(1)
3.4.3 Intact Cells
22(1)
3.4.4 Tissue Slices and Blood-Free Perfused Organs
23(2)
3.4.5 Organs In Vivo
25(1)
3.5 Comparison Between Fluorescence Monitoring and Biochemical Analysis of the Pyridine Nucleotides
26(1)
3.6 Intracellular Origin of NADH Fluorescence Signal
27(16)
References
31(12)
4 Technological Aspects of NADH Monitoring
43(26)
4.1 Introduction
43(1)
4.2 Old Types of NADH Fluorometers
43(1)
4.3 Monitoring NADH Fluorescence and Reflectance
44(1)
4.4 Fiber-Optic Fluorometer--Reflectometer
44(4)
4.4.1 The "Mito Viewer"
46(2)
4.5 Factors Affecting NADH Fluorescence and Reflectance Signals
48(4)
4.5.1 Movement Artifacts
49(1)
4.5.2 Intracellular and Extracellular Space Events
49(2)
4.5.3 Vascular Events
51(1)
4.5.3.1 Blood Oxygenation
51(1)
4.5.3.2 Blood Volume Changes
51(1)
4.6 Principles of NADH Artifact Correction
52(1)
4.7 Calibration of NADH in Solution
53(4)
4.7.1 Aims of the Study
54(1)
4.7.2 Basic Experimental Approach
54(1)
4.7.3 Experimental Methodology
55(1)
4.7.4 Choice of Concentrations of NADH Solutions
55(1)
4.7.5 Materials and Methods
55(1)
4.7.6 Results
56(1)
4.7.7 Conclusions
56(1)
4.8 Calibration of the Monitored Signals
57(1)
4.9 Preparation of Animals for Monitoring
57(12)
4.9.1 Surgical Procedures
58(1)
4.9.1.1 Monitoring the Brain
58(2)
4.9.1.2 Monitoring the Spinal Cord
60(1)
4.9.1.3 Monitoring of Heart Muscle In Situ
61(1)
4.9.1.4 Monitoring of Visceral Organs
61(1)
4.9.1.5 Experimental Protocols
61(2)
References
63(6)
5 Monitoring of NADH Together with Other Tissue Physiological Parameters
69(20)
5.1 Introduction
69(1)
5.2 Brain Energy Metabolism
69(3)
5.3 Methods
72(1)
5.3.1 NADH Monitoring
72(1)
5.3.2 Microcirculatory Blood Flow
72(1)
5.3.3 Oxygen Electrodes
72(1)
5.3.4 Ion-Selective Electrodes and DC Potential
72(1)
5.3.5 Reference Electrode
73(1)
5.3.6 Electrocorticography (ECoG)
73(1)
5.3.7 Temperature Measurements
73(1)
5.3.8 Data Collection and Analysis
73(1)
5.3.9 Animal Preparation for Monitoring
73(1)
5.4 Results and Discussion
73(16)
5.4.1 Fiber-Optic-Based Fluorometer and EEG
73(1)
5.4.2 Addition of K+ Monitoring
74(1)
5.4.3 NADH and pO2 Measurements
74(2)
5.4.4 The First Multiparametric Monitoring System
76(2)
5.4.5 An Upgraded Multiparametric Monitoring System
78(1)
5.4.6 Addition of Hb Saturation to the MPA
78(2)
5.4.7 A New Model of the MPA
80(1)
5.4.8 Multiparametric Monitoring of Neurosurgical Patients
80(1)
5.4.9 Use of MPA Inside an NMR Magnet
80(2)
5.4.10 Propagation of CSD Wave
82(1)
5.4.11 Addition of ICP Probe to the MPA
83(1)
5.4.12 Use of MPA in Traumatic Brain Injury
84(1)
5.4.13 Use of MPA in Monitoring the Beating Heart
84(1)
5.4.14 Use of MPA in Monitoring the Kidney
85(2)
References
87(2)
6 Multisite Monitoring of NADH
89(22)
6.1 Introduction
89(1)
6.2 Multisite Monitoring of NADH in the Same Organ
89(7)
6.2.1 NADH Monitoring of Two Sites in the Brain
89(2)
6.2.2 NADH Monitoring of Two Sites in the Same Heart
91(3)
6.2.3 NADH Monitoring of Four Sites in the Same Brain
94(2)
6.3 NADH Monitoring of Four Different Organs in the Same Animal
96(3)
6.4 Multisite Monitoring of NADH and DC Potential
99(1)
6.5 Monitoring of NADH and Tissue Blood Flow in More Than One Organ
100(1)
6.6 Multisite Monitoring of NADH, CBF, and DC Potential in the Brain
101(1)
6.7 Two-Dimensional Mapping of NADH Fluorescence
102(9)
References
108(3)
7 Responses of NADH to Physiological and Pathophysiological Conditions
111(94)
7.1 Introduction
111(1)
7.2 Perturbation of Oxygen Supply In Vivo
111(27)
7.2.1 Introduction
111(1)
7.2.2 Anoxia and Hypoxia
112(8)
7.2.3 Ischemia (Decreased Blood Flow)
120(4)
7.2.4 Hyperoxia (Normobaric and Hyperbaric Increase in FiO2)
124(8)
7.2.5 Changes in Inspired CO2 and CO
132(2)
7.2.6 Oscillations of NADH Fluorescence
134(4)
7.3 Responses to Energy Consumption Changes
138(20)
7.3.1 Introduction
138(1)
7.3.2 Direct Cortical Stimulation
138(1)
7.3.3 Brain Activation by Epileptic Activity
139(3)
7.3.4 Responses to Cortical Spreading Depression
142(8)
7.3.5 Activation of the Brain Under Restricted Oxygen Supply
150(7)
7.3.6 Activation of Body Organs
157(1)
7.4 Effects of Pharmacological Agents
158(11)
7.5 Effects of Other Pathophysiological Conditions
169(36)
7.5.1 Hemorrhage
169(4)
7.5.2 Effects of Animal Age
173(3)
7.5.3 Effects of Hypothermia
176(1)
7.5.4 Effects of Elevated ICP and Head Injury
177(3)
7.5.5 Sepsis and Septic Shock
180(2)
7.5.6 Monitoring of NADH During Organ Transplantation
182(1)
References
183(22)
8 Monitoring of Various Organs in Different Animal Models
205(36)
8.1 Introduction
205(1)
8.2 Monitoring the Brain
205(9)
8.2.1 Studies of Large Animal Brains (Pigs, Dogs, and Monkeys)
205(3)
8.2.2 Monitoring the Brain in Cats
208(6)
8.3 Monitoring the Heart
214(3)
8.4 Monitoring of Skeletal Muscle
217(1)
8.5 Liver Monitoring
217(3)
8.6 Monitoring the Kidney
220(1)
8.7 NADH Monitoring in the Gastrointestinal Tract
220(1)
8.8 Monitoring of Other Organs
220(21)
References
224(17)
9 Monitoring of NADH in Human Brain and Body Organs
241(20)
9.1 Introduction
241(1)
9.2 History of NADH Monitoring in Patients
241(3)
9.2.1 Monitoring the Human Brain
241(1)
9.2.2 Monitoring the Heart and Skeletal Muscle
242(1)
9.2.3 Monitoring of Visceral Organs
243(1)
9.2.4 Monitoring of Cancer Cells and Tissues
244(1)
9.3 Monitoring of Patients in Clinical Practice
244(17)
9.3.1 Methods and Results
246(1)
9.3.1.1 The Multiparametric Monitoring System
246(4)
9.3.1.2 The "Tissue Spectroscope"
250(2)
9.3.1.3 The CritiView
252(5)
References
257(4)
10 Discussion and Conclusions
261(12)
10.1 From Isolated Mitochondria to Clinical Monitoring of NADH
261(4)
10.2 From the Single-Parameter to Multiparameter Monitoring Approach
265(1)
10.3 Tissue Vitality Index
266(4)
10.4 Future Perspectives
270(3)
References
270(3)
About the Author 273(2)
Index 275
About the Author

Avraham Mayevsky, Ph.D. is a Professor Emeritus in theFaculty of Life Sciences and the Brain Research Center at Bar Ilan University, Israel.

He has published  more than two hundred papers in the field of mitochondrial function and tissue physiology in vivo under pathophysiological conditions.