Muutke küpsiste eelistusi

E-raamat: Modeling Decisions for Artificial Intelligence: 19th International Conference, MDAI 2022, Sant Cugat, Spain, August 30 - September 2, 2022, Proceedings

Edited by , Edited by
  • Formaat - EPUB+DRM
  • Hind: 67,91 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the 19th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2022, held in Sant Cugat, Spain, during August - September 2022.

The 16 papers presented in this volume were carefully reviewed and selected from 41 submissions. 

The papers discuss different facets of decision processes in a broad sense and present research in data science, machine learning, data privacy, aggregation functions, human decision-making, graphs and social networks, and recommendation and search. They were organized in topical sections as follows: Decision making and uncertainty; Data privacy; Machine Learning and data science.

Decision making and uncertainty.- Optimality Analysis for Stochastic LP
Problems.- A Multi-Perceptual-Based Approach for Group Decision
Aiding.- Probabilistic Judgement Aggregation by Opinion
Update.- Semiring-valued fuzzy rough sets and colour segmentation.- Data
privacy.- Bistochastic privacy.- Improvement of Estimate Distribution with
Local Differential Privacy.- Geolocated Data Generation and Protection Using
Generative Adversarial Net-works.- Machine Learning and data science.- A
Strategic Approach based on AND-OR Recommendation Trees for Updating Obsolete
Information.- Identification of Subjects Wearing a Surgical Mask from their
Speech by means of x-vectors and Fisher Vectors.- Measuring Fairness in
Machine Learning models via Counterfactual Examples.- Re-Calibrating Machine
Learning Models using Confidence Interval Bounds.- An Analysis of
Byzantine-Tolerant Aggregation Mechanisms on Model Poisoning in Federated
Learning.- Effective Early Stopping of Point Cloud Neural
Networks.- Representation and Interpretability of IE Integral Neural
Networks.- Deep Attributed Graph Embeddings.- Estimation of Prediction Error
with Regression Trees.