Muutke küpsiste eelistusi

E-raamat: Nanoelectronics: Devices, Circuits and Systems

Series edited by (Department of Electronics and Communication Engineering, Indian Institute of Technology-Roorkee, Uttarakhand, India)
  • Formaat: PDF+DRM
  • Sari: Micro & Nano Technologies
  • Ilmumisaeg: 05-Oct-2018
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128133545
  • Formaat - PDF+DRM
  • Hind: 188,37 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Micro & Nano Technologies
  • Ilmumisaeg: 05-Oct-2018
  • Kirjastus: Elsevier Science Publishing Co Inc
  • Keel: eng
  • ISBN-13: 9780128133545

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Nanoelectronics: Devices, Circuits and Systems explores current and emerging trends in the field of nanoelectronics, from both a devices-to-circuits and circuits-to-systems perspective. It covers a wide spectrum and detailed discussion on the field of nanoelectronic devices, circuits and systems. This book presents an in-depth analysis and description of electron transport phenomenon at nanoscale dimensions. Both qualitative and analytical approaches are taken to explore the devices, circuit functionalities and their system applications at deep submicron and nanoscale levels. Recent devices, including FinFET, Tunnel FET, and emerging materials, including graphene, and its applications are discussed.

In addition, a chapter on advanced VLSI interconnects gives clear insight to the importance of these nano-transmission lines in determining the overall IC performance. The importance of integration of optics with electronics is elucidated in the optoelectronics and photonic integrated circuit sections of this book. This book provides valuable resource materials for scientists and electrical engineers who want to learn more about nanoscale electronic materials and how they are used.

  • Shows how electronic transport works at the nanoscale level
  • Demonstrates how nanotechnology can help engineers create more effective circuits and systems
  • Assesses the most commonly used nanoelectronic devices, explaining which is best for different situations
List of Contributors xv
About the Author xvii
Preface xix
Acknowledgments xxiii
Part I Device Modeling and Applications 1(130)
Chapter 1 Tunnel FET: Devices and Circuits
3(24)
Prabhat Kumar Dubey
1.1 CMOS Power Trends
3(2)
1.2 Tunneling Phenomena
5(2)
1.2.1 Kane's Formulation
6(1)
1.2.2 WKB Approximation
6(1)
1.3 Tunneling Field-Effect Transistors
7(3)
1.3.1 Current-Voltage Characteristics
8(1)
1.3.2 Capacitance-Voltage Characteristics
9(1)
1.4 Challenges for TFETs
10(5)
1.4.1 ON Current Performance Boosters
10(3)
1.4.2 Ambipolarity
13(2)
1.5 TFET Characteristics and Impact on the Circuit Design
15(1)
1.5.1 Unidirectional Conduction
15(1)
1.5.2 Enhanced ON-State Miller Capacitance
16(1)
1.6 Tunnel FET SRAM Design
16(2)
1.6.1 6T TFET SRAM Cell
17(1)
1.6.2 8T TFET SRAM Cell
17(1)
1.7 TFET Analog/RF Application
18(4)
1.7.1 Transconductance Generation Factor (gm/IDs)
20(1)
1.7.2 Linearity Performance
21(1)
1.8 TFET-Based OTA
22(1)
1.9 Summary
23(1)
Acknowledgment
23(1)
References
24(3)
Chapter 2 Electrothermal Characterization, TCAD Simulations, and Physical Modeling of Advanced SiGe HBTs
27(68)
Rosario D'Esposito
Sebastien Fregonese
Thomas Zimmer
2.1 SiGe HBT Technologies and Their Thermal Issues
27(6)
2.1.1 THz Waves and Applications
27(1)
2.1.2 SiGe BiCMOS Technologies
28(2)
2.1.3 Thermal Issues in SiGe HBT Technology Nodes
30(3)
2.2 Device Characterization in SiGe HBT Technologies
33(28)
2.2.1 Modeling of Device Self-heating in HiCuM
33(2)
2.2.2 Self-heating Effect on the Device DC and AC Characteristics
35(6)
2.2.3 Extraction of the Rth
41(1)
2.2.4 Extraction of the Zth
42(7)
2.2.5 Recursive Thermal Network Models
49(4)
2.2.6 Behavior of the Transistor Under Two Tones Excitation
53(8)
2.3 Electrothermal Impact of the BEOL Metallization in SiGe HBTs
61(27)
2.3.1 Electrothermal Characterization of Dedicated HBT Test Structures
62(11)
2.3.2 Compact Modeling of the BEOL Thermal Impact
73(7)
2.3.3 Static and Dynamic 3D TCAD Thermal Simulations
80(8)
References
88(7)
Chapter 3 InP-Based High-Electron-Mobility Transistors for High-Frequency Applications
95(20)
D. Nirmal
J. Ajayan
3.1 History and Background of HEMT
95(1)
3.2 Applications
96(1)
3.3 Working Principle
97(1)
3.3.1 Two-Dimensional Electron Gas in HEMT
97(1)
3.4 Materials and its Properties-(InP/GaAs)
98(1)
3.5 General Structure of Inp HEMT
99(1)
3.6 DC and Microwave Characteristics of HEMT
100(1)
3.7 Drain Current Characteristics
101(4)
3.8 Subthreshold and Gate Leakage Characteristics
105(1)
3.9 Measurement of DC and RF Performance of the Device
105(1)
3.10 Transconductance Characteristics
106(4)
3.11 Drain Current Characteristics
110(1)
3.12 Subthreshold and Gate Leakage Characteristics
110(3)
3.13 Future Scope
113(1)
References
113(1)
Further Reading
114(1)
Chapter 4 Organic Transistor- Device Structure, Model and Applications
115(16)
Yaochuan Mei
4.1 Organic Electronics: Low-Cost, Large-Area, and Flexible
115(1)
4.2 Field-Effect Transistors Structure
115(2)
4.3 Field-Effect Transistors Characterization
117(2)
4.4 Organic Semiconductors Selection
119(2)
4.5 Interfacial Engineering in Field-Effect Transistors
121(6)
4.5.1 Changes in Surface Energy as a Result of SAM Treatment
123(2)
4.5.2 Work Function Shift
125(1)
4.5.3 Contact Resistance
126(1)
References
127(2)
Further Reading
129(2)
Part II Spintronics 131(86)
Chapter 5 Mitigating Read Disturbance Errors in STT-RAM Caches by Using Data Compression
133(20)
Sparsh Mittal
5.1 Introduction
133(1)
5.2 Background
134(3)
5.2.1 Motivation for Using Nonvolatile Memories
135(1)
5.2.2 Working of STT-RAM
135(1)
5.2.3 Origin of Read Disturbance Error
135(1)
5.2.4 Characteristics of Read Disturbance Error
136(1)
5.2.5 Strategies for Addressing RDE
136(1)
5.2.6 Cache Properties
137(1)
5.3 SHIELD: Key Idea and Architecture
137(4)
5.3.1 Compression Algorithm
137(1)
5.3.2 Defining Consecutive Reads
138(1)
5.3.3 SHIELD: Key Idea
138(1)
5.3.4 Action on Read and Write Operations
139(1)
5.3.5 Overhead Assessment
140(1)
5.4 Salient Features of SHIELD and Qualitative Comparison
141(1)
5.5 Experimentation Platform
142(2)
5.5.1 Simulator Parameters
142(1)
5.5.2 Workloads
143(1)
5.5.3 Simulation Completion Strategy
143(1)
5.5.4 Comparison With Related Schemes
143(1)
5.5.5 Evaluation Metrics
144(1)
5.6 Results and Analysis
144(5)
5.6.1 Main Results
144(4)
5.6.2 Parameter Sensitivity Results
148(1)
5.7 Conclusion and Future Work
149(1)
References
150(3)
Chapter 6 Multi-Functionality of Spintronic Materials
153(64)
Kuldeep C. Verma
R.K. Kotnala
Navdeep Goyal
6.1 Introduction-What Is Spintronics?
153(5)
6.1.1 Spintronics Based on Multiferroics
154(3)
6.1.2 Spintronics Based on DMSs
157(1)
6.2 Methods of Synthesis of the Spintronic Materials
158(4)
6.2.1 Synthesis of Multiferroics
158(3)
6.2.2 Synthesis of DMSs
161(1)
6.3 Spintronics Based on BTO Multiferroic Systems
162(23)
6.3.1 Perovskite (ABO3) Multiferroics
162(2)
6.3.2 Single-Phase Multiferroic BTO Systems
164(14)
6.3.3 Multiferroic Composites
178(3)
6.3.4 Multiferroic Thin Films
181(4)
6.4 Spintronics Based on Diluted Magnetic Semiconductor, DMS ZnO
185(22)
6.4.1 TM Ions Impurity in DMS ZnO
185(1)
6.4.2 RE Ions Impurity in DMS ZnO
186(1)
6.4.3 Defects-Assisted Ferromagnetism Due to TM and RE Ions in ZnO
186(2)
6.4.4 First-Principle Calculations for RE and TM Ions in the Wurtzite ZnO Structure
188(1)
6.4.5 Influence of Dopant Concentration (TM and RE ions) on Ferromagnetism of ZnO
189(1)
6.4.6 Realizing Wurtzite Structure of ZnO With Dopant Ions
189(4)
6.4.7 Nanostructural Formation in Pure and Doped DMS ZnO
193(2)
6.4.8 Raman Spectra for Ni-, Cu-, Ce-Substituted ZnO Nanoparticles
195(1)
6.4.9 Photoluminescence Spectra Evaluated Defects in Co:ZnO Nanoparticles
196(1)
6.4.10 Magnetism in DMS ZnO
197(10)
6.5 Conclusion
207(1)
Acknowledgment
207(1)
References
207(10)
Part III Optics and Photonics 217(70)
Chapter 7 Photonics Integrated Circuits
219(52)
Shibnath Pathak
7.1 Introduction to Photonics
219(1)
7.2 Material Platform
219(2)
7.2.1 Silica-on-Silicon
220(1)
7.2.2 III-V Semiconductor Materials
220(1)
7.2.3 Lithium Niobate
220(1)
7.2.4 Silicon Nitride
221(1)
7.2.5 Silicon-on-Insulator
221(1)
7.3 Waveguide Geometries
221(8)
7.3.1 Slab Waveguide
222(1)
7.3.2 Ridge Waveguide
222(4)
7.3.3 Rib Waveguide
226(1)
7.3.4 Slot Waveguide
227(2)
7.4 Passive Devices
229(17)
7.4.1 Optical Couplers
229(8)
7.4.2 Arrayed Waveguide Grating
237(3)
7.4.3 Mach-Zehnder Interferometer
240(2)
7.4.4 Ring Resonator
242(4)
7.5 Active Devices
246(18)
7.5.1 Laser
246(5)
7.5.2 Optical Modulator
251(7)
7.5.3 Photodetectors
258(6)
7.6 Photonics Integrated Circuits
264(3)
7.6.1 Laser Array
264(1)
7.6.2 Transmitter and Receiver
265(2)
References
267(4)
Chapter 8 Graphene Based Optical Interconnects
271(16)
Xinbo Wang
Berardi Sensale-Rodriguez
8.1 Introduction
271(1)
8.2 Graphene: Structure and Electrical Properties
272(1)
8.3 Graphene: Optical Properties
273(2)
8.4 Waveguide-Integrated Graphene Devices: Fundamental Operation Principles
275(3)
8.5 Waveguide-Integrated Graphene Devices: Recent Experimental Developments
278(1)
8.6 Emerging Research Trends in Graphene-Based Optical Devices
279(3)
References
282(5)
Part IV Plasmonics 287(66)
Chapter 9 Hot Carrier Generation in Plasmonic Nanostructures: Physics and Device Applications
289(28)
Ravi S. Hegde
Saumyakanti Khatua
9.1 Introduction
289(1)
9.2 The Physics of Hot Carrier Generation, Scattering, and Transport Processes
290(13)
9.2.1 The Optical Properties of Plasmonic Nanoresonators
290(5)
9.2.2 The Generation of Hot Carriers and Their Energy Distribution
295(2)
9.2.3 Scattering and Lifetimes of Hot Carriers
297(3)
9.2.4 Hot Carrier Injection Into Semiconductors
300(3)
9.3 Applications of Hot Carrier Generation
303(6)
9.3.1 Photodetectors
303(3)
9.3.2 Chemical Reactions Through Transfer of Charge Carriers
306(3)
9.4 Conclusion
309(1)
Acknowledgment
310(1)
References
311(6)
Chapter 10 Plasmonic Metamaterial-Based RF-THz Integrated Circuits: Design and Analysis
317(36)
Rahul Kumar Jaiswal
Nidhi Pandit
Nagendra Prasad Pathak
10.1 Introduction
317(4)
10.1.1 Surface Plasmon Polaritons
318(2)
10.1.2 Spoof Surface Plasmon Polaritons
320(1)
10.2 Unit Cell Design and Dispersion Analysis
321(7)
10.2.1 Design and Analysis at Terahertz Frequency Regime
322(1)
10.2.2 Design and Analysis at Microwave Frequency
323(4)
10.2.3 Conversion and Momentum Matching (at Microwave, mm Wave and THz Frequencies)
327(1)
10.3 Plasmonic Metamaterial-Based Transitions and RF-Microwave Components
328(22)
10.3.1 Transitions
328(2)
10.3.2 Filters
330(4)
10.3.3 Planar Ring Resonators
334(8)
10.3.4 Spoof SPP-Fed Antenna Design
342(8)
10.4 Conclusion
350(1)
References
350(3)
Part V Emerging Materials 353(80)
Chapter 11 Advances in InSb and InAs Nanowire Based Nanoelectronic Field Effect Transistors
355(20)
Suprem R. Das
11.1 Introduction
355(3)
11.1.1 Search for Better Materials and Devices
355(1)
11.1.2 InSb and InAs Materials and Their Nanowires
356(2)
11.2 InSb and InAs Nanowire Growth
358(3)
11.3 InSb and InAs Materials and Their Nanowire Field-Effect Transistors
361(2)
11.4 Diffusive Transport Model Within the Channel
363(2)
11.4.1 Electrostatics and Channel Potential With Schottky Barrier at the Metal-nanowire Junctions
363(2)
11.4.2 1D Transport and Landauer Formalism
365(1)
11.5 InSb and InAs NW SB-FETs
365(2)
11.6 GAA NVVFETs
367(1)
11.7 Transport in NW Tunnel FETs
368(1)
11.8 Emerging Non-CMOS Nanoelectronic Devices and Quantum Devices
368(2)
11.9 Conclusion and Outlook
370(1)
Acknowledgments
371(1)
References
371(4)
Chapter 12 Carbon Nanotube and Nanowires for Future Semiconductor Devices Applications
375(24)
Saurahh Chaudhury
Sanjeet Kumar Sinha
12.1 Introduction
375(1)
12.2 Structure of CNTs
376(6)
12.2.1 Symmetry Structure of Nanotubes
377(2)
12.2.2 Electronic Characteristics
379(1)
12.2.3 The CNTFET Device Structures
380(2)
12.3 Semiconductor NWs
382(1)
12.3.1 NWFET Structures
383(1)
12.4 Effect of Oxide Thickness on Gate Capacitance in Nanodevices
383(4)
12.5 Effect of Device Parameters on Threshold Voltage in CNTFET Devices
387(8)
12.5.1 Effect of Chiral Vector
388(1)
12.5.2 Effect of Temperature
389(2)
12.5.3 Effect of Metal Gate Work Function
391(1)
12.5.4 Effect of High-K Dielectric
392(1)
12.5.5 Effect of Channel Length
393(2)
12.6 Conclusion
395(1)
References
396(3)
Chapter 13 Role of Nanocomposites in Future Nanoelectronic Information Storage Devices
399(34)
Vaishali Shukla
Bhargav Raval
Sachin Mishra
Man Singh
13.1 Introduction
399(2)
13.2 Classification of Nanomaterials
401(2)
13.2.1 Origin Relevant Nanomaterials
401(1)
13.2.2 Dimension Relevant Nanomaterials
401(1)
13.2.3 Structural Configuration Relevant Nanomaterials
402(1)
13.3 Trends and Future Applications
403(2)
13.4 Nanocomposite: A Brief Overview
405(2)
13.4.1 Ceramic-Matrix Nanocomposites
405(1)
13.4.2 Metal-Matrix Nanocomposites
406(1)
13.4.3 Polymer-Matrix Nanocomposites
406(1)
13.5 Nanoelectronic: Information Storage Devices
407(18)
13.5.1 Genesis of the Concept
407(1)
13.5.2 Approaches of Information Storage Devices
408(4)
13.5.3 Fabrication of Information Storage Devices
412(6)
13.5.4 Electrical Characteristics of the Hybrid Information Storage Devices
418(3)
13.5.5 Switching and Carrier Transport Mechanism
421(4)
13.6 Outcomes and Conclusive Aspect
425(1)
References
426(7)
Index 433
Brajesh Kumar Kaushik is Associate Professor, Department of Electronics and Communication Engineering, Indian Institute of Technology, Roorkee, India. He has served as Editor of numerous international journals, including Elseviers Microelectronics. His research interests include Nanotechnology Design, Nanoscale Interconnects and Devices; Carbon Nanotube-Based Applications; Organic Electronics and Spintronics