Muutke küpsiste eelistusi

E-raamat: Nanoscale Optical Properties of Complex Nanostructures

  • Formaat: EPUB+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 09-Dec-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319702599
  • Formaat - EPUB+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Springer Theses
  • Ilmumisaeg: 09-Dec-2017
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319702599

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book presents studies of complex nanostructures with unique optical responses from both theoretical and experimental perspectives. The theory approaches the optical response of a complex structure from both quantum-mechanical and semiclassical frameworks, and is used to understand experimental results at a fundamental level as well as to form a quantitative model to allow the design of custom nanostructures. The experiments utilize scanning transmission electron microscopy and its associated analytical spectroscopies to observe nanoscale optical effects, such as surface plasmon resonances, with nanometer-scale spatial resolution. Furthermore, there is a focus in the dissertation on the combination of distinct techniques to study the difficult-to-access aspects of the nanoscale response of complex nanostructures: the combination of complementary spectroscopies, the combination of electron microscopy and photonics, and the combination of experiment and theory. Overall, the work demonstrates the importance of observing nanoscale optical phenomena in complex structures, and observing them directly at the nanoscale.
1 Introduction
1(16)
1.1 Nanoscale Complexity in Modern Nanotechnology
1(3)
1.2 The Interaction of Light and Matter
4(2)
1.2.1 Optical Properties in Semiconductors
5(1)
1.3 Plasmonics: Controlling Light at the Nanoscale
6(11)
1.3.1 Plasmon Resonances in Semiconductors and Metals
6(2)
1.3.2 Propagating Plasmon Polaritons at Metal/Dielectric Interfaces
8(2)
1.3.3 Localized Surface Plasmon Resonances
10(1)
1.3.4 Surface Plasmons in Complex Nanostructures
11(2)
References
13(4)
2 Tools and Techniques
17(20)
2.1 Density Functional Theory: Quantum Mechanics for Complex Systems
17(4)
2.1.1 Calculating Optical Properties with Density Functional Theory
19(2)
2.2 Finite-Difference Time-Domain: Electrodynamics for Nanostructurcs
21(1)
2.3 Scanning Transmission Electron Microscopy: Ultrahigh Resolution Analysis
22(5)
2.3.1 Correcting Aberrations in an Electron Probe
24(1)
2.3.2 Bright Field and Dark Field in the STEM
25(2)
2.4 Electron-Beam Spectroscopies for Nanoscale Optical Properties
27(10)
2.4.1 Electron Beam Interactions with Materials
28(1)
2.4.2 Electron Energy Loss Spectroscopy
29(2)
2.4.3 Cathodoluminescence
31(3)
References
34(3)
3 Extracting Interface Absorption Effects from First-Principles
37(16)
3.1 Atomistic Interface Effects
37(7)
3.1.1 Extracting Atomistic Interface Absorption Effects
38(2)
3.1.2 Aa, the Interface Absorbance Difference
40(1)
3.1.3 Accuracy of the Generalized Gradient Approximation
41(1)
3.1.4 Absorption and Reflection at the Atomic Scale
42(2)
3.2 Converging the Interface
44(1)
3.3 Inverted Design Through Interface Concentration
44(2)
3.3.1 Combining Distinct Interfaces
44(2)
3.4 Quantitative Applications
46(7)
3.4.1 Interface Absorption vs. Bulk Absorption
46(1)
3.4.2 Wavelength Selectivity and Absorption Enhancement
47(2)
References
49(4)
4 Advanced Electron Microscopy for Complex Nanotechnology
53(22)
4.1 Ge-Based FET Devices
53(8)
4.1.1 Negative-Bias Temperature Instability in Flat Si-Capped pMOSFETs
54(3)
4.1.2 Structural and Compositional Study of Ge pMOS FinFETs
57(4)
4.2 Magnetic and Plasmonic Nanocomposites
61(14)
4.2.1 Composition of Nanocomposite Components
61(4)
4.2.2 Bonding of SPIONs to the Au Nanostructures
65(4)
4.2.3 The Optical Response of the Nanocomposites
69(4)
References
73(2)
5 Probing Plasmons in Three Dimensions
75(16)
5.1 Plasmons in Three-Dimensional Structures
75(1)
5.2 Complementary Spectroscopies in the Electron Microscope
76(9)
5.2.1 Surface Plasmons Observed in Both EELS and CL
78(1)
5.2.2 Constant Background Subtraction in EELS Spectrum Imaging
79(3)
5.2.3 Surface Plasmons Observed Only in EELS
82(1)
5.2.4 Surface Plasmons Observed Only in CL
83(2)
5.3 Validation of Experimental Results
85(6)
5.3.1 Approximating Nanoparticle Geometries
85(2)
5.3.2 Finite-Difference Time-Domain Confirmation of Experimental Analysis
87(2)
References
89(2)
6 The Plasmonic Response of Archimedean Spirals
91(14)
6.1 Combining Photonics and Electron Microscopy for Plasmonic Analyses
92(5)
6.1.1 EELS Analysis of Lithographically Prepared Nanostructures
93(1)
6.1.2 Enhancing STEM with Photonics
94(3)
6.2 Orbital Angular Momentum in Plasmonic Spiral Holes
97(8)
6.2.1 Visualizing Orbital Angular Momentum with Cathodoluminescence
99(3)
References
102(3)
7 Future Directions and Conclusion
105(4)
7.1 Advanced Experiments for Nanoscale Optical Analyses
105(2)
7.2 Outlook and Conclusion
107(2)
References
107(2)
Appendix A Overview of Electron Microscopes
109(4)
A.1 Nion UltraSTEM 200
109(1)
A.2 VG-HB601
110(1)
A.3 Zeiss Libra200-MC
110(3)
Reference
111(2)
Appendix B Fit Parameters EELS and CL Data in Chap. 5
113(2)
Appendix C Sample Preparation for STEM Analysis
115
C.1 Solid-State Device Cross-Sections with Dual Beam FIB/SEM
115(2)
C.2 Direct Sample Preparation of Nanospiral Arrays with EBL
117
Dr. Jordan A. Hachtel received a Ph.D. in Physics from Vanderbilt University in 2016, and is now a postdoctoral researcher at Oak Ridge National Laboratory.