Muutke küpsiste eelistusi

E-raamat: Nanosensors: Physical, Chemical, and Biological

(CSIR-Central Electronics Engineering Research Institute, India)
  • Formaat: 578 pages
  • Sari: Series in Sensors
  • Ilmumisaeg: 25-Feb-2021
  • Kirjastus: CRC Press
  • ISBN-13: 9781000331271
  • Formaat - PDF+DRM
  • Hind: 126,09 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 578 pages
  • Sari: Series in Sensors
  • Ilmumisaeg: 25-Feb-2021
  • Kirjastus: CRC Press
  • ISBN-13: 9781000331271

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Nanosensors: Physical, Chemical, and Biological, Second Edition offers a panoramic view of the field and related nanotechnologies with extraordinary clarity and depth.



Nanosensors are innovative devices that exploit the unique properties exhibited by matter at the nanoscale. A growing and exciting field, nanosensors have recently spurred considerable research endeavors across the globe, driving a need for the development of new device concepts and engineering nanostructured materials with controlled properties. Nanosensors: Physical, Chemical, and Biological, Second Edition offers a panoramic view of the field and related nanotechnologies with extraordinary clarity and depth.

Presenting an interdisciplinary approach, blending physics, chemistry and biology, this new edition is broad in scope and organised into six parts; beginning with the fundamentals before moving onto nanomaterials and nanofabrication technologies in the second part. The third and fourth parts provide a critical appraisal of physical nanosensors, and explore the chemical and biological categories of nanosensors. The fifth part sheds light on the emerging applications of nanosensors in the sectors of society, industry, and defense and details the cutting-edge applications of state-of-the-art nanosensors in environmental science, food technology, medical diagnostics, and biotechnology. The final part addresses self-powering and networking issues of nanosensors, and provides glimpses of future trends.

This is an ideal reference for researchers and industry professionals engaged in the frontier areas of material science and semiconductor fabrication as well as graduate students in physics and engineering pursuing electrical engineering and electronics courses with a focus on nanoscience and nanotechnology.

Key features:

  • Provides an updated, all-encompassing exploration of contemporary nanosensors and highlights the exclusive nanoscale properties on which nanosensors are designed.
  • Presents an accessible approach with a question-and-answer format to allow an easy grasp of the intricacies involved in the complex working mechanisms of devices.
  • Contains clear, illustrative diagrams enabling the visualization of nanosensor operations, along with worked examples, end of chapter questions, and exhaustive up-to-date bibliographies appended to each chapter.
Preface to the Second Edition xxiii
Preface to the First Edition xxv
Acknowledgments xxvii
Author's Profile xxix
About the Book (2nd Edition) xxxi
Abbreviations and Acronyms xxxiii
Mathematical Notation xli
Part I Fundamental Concepts of Nanosensors
1 Introduction to Nanosensors
3(44)
1.1 Getting Started with Nanosensors
3(1)
1.2 Natural Sciences
3(1)
1.3 Physics
3(4)
1.3.1 Definition of Physics
3(1)
1.3.2 Branches of Physics
3(1)
1.3.3 Matter: Its States, Materials, and Particles
3(1)
1.3.4 Molecules, Atoms, and Atomic Structure
3(1)
1.3.5 Mechanics
4(1)
1.3.6 Heat
5(1)
1.3.7 Sound
5(1)
1.3.8 Light
5(1)
1.3.9 Electricity
5(1)
1.3.10 Magnetism
6(1)
1.3.11 Electromagnetism
6(1)
1.3.12 SI System of Units
6(1)
1.4 Chemistry
7(3)
1.4.1 Definition of Chemistry
7(1)
1.4.2 Elements and Compounds
7(1)
1.4.3 Organic and Inorganic Compounds
7(1)
1.4.4 Subdivisions of Chemistry
7(1)
1.4.5 Natural and Artificial Elements
7(1)
1.4.6 Metals, Nonmetals, and Metalloids
7(1)
1.4.7 Periodic Table of Elements
7(1)
1.4.8 Chemical Change and Reaction
7(1)
1.4.9 Electronic Configuration (Structure) of Elements
8(1)
1.4.10 Chemical Bond
8(1)
1.4.11 Oxidation and Reduction
8(1)
1.4.12 Acid, Base, and Salt
8(1)
1.4.13 Expressing Concentrations of Solutions and Gases
8(1)
1.4.14 Hydrocarbons: Saturated and Unsaturated
8(1)
1.4.15 Alkyl and Aryl Groups
9(1)
1.4.16 Alcohols and Phenols
9(1)
1.4.17 Carboxylic Acids
9(1)
1.4.18 Aldehydes and Ketones
9(1)
1.4.19 Amines and Amino Acids
9(1)
1.4.20 Lipids
9(1)
1.4.21 Carbohydrates
9(1)
1.4.22 Proteins and Enzymes
10(1)
1.5 Biology
10(1)
1.5.1 What Is Biology?
10(1)
1.5.2 Branches of Biology
10(1)
1.5.3 Origin and Evolution of Life
10(1)
1.5.4 The Cell
10(1)
1.5.5 Differences between Bacteria and Viruses
11(1)
1.5.6 Heredity, Chromosomes, Genes, and Related Terms
11(1)
1.6 Semiconductor Electronics
11(4)
1.6.1 What Is Semiconductor Electronics?
11(1)
1.6.2 Energy Bands in Conductors, Semiconductors, and Insulators
11(1)
1.6.3 Interesting Properties of Semiconductors
11(2)
1.6.4 P--N Junction
13(1)
1.6.5 Bipolar Junction Transistor
13(1)
1.6.6 Metal-Oxide-Semiconductor Field-Effect Transistor
13(1)
1.6.7 Analog and Digital Circuits
14(1)
1.7 Nanometer and Appreciation of Its Magnitude
15(1)
1.8 Nanoscience and Nanotechnology
15(1)
1.9 Nanomaterials and the Unusual Behavior at Nanoscales
16(1)
1.10 Moving toward Sensors and Transducers: Meaning of Terms "Sensors" and "Transducers"
17(1)
1.11 Definition of Sensor Parameters and Characteristics
18(1)
1.12 Evolution of Semiconductor-Based Microsensors
18(1)
1.13 From the Macrosensor to the Microsensor Age and the Necessity for Nanoscale Measurements
18(2)
1.13.1 A Miniaturized Sensor Can Accomplish Many Tasks That a Bulky Device Cannot Perform
18(1)
1.13.2 The Issue of Power Consumption
19(1)
1.13.3 Low Response Times
19(1)
1.13.4 Multi-Analyte Detection and Multifunctionality
19(1)
1.13.5 Sensitivity Considerations and Need for Functionalization
20(1)
1.13.6 Interfacing with Biomolecules
20(1)
1.13.7 Low Costs
20(1)
1.13.8 Possibility of a New Genre of Devices
20(1)
1.14 Definition and Classification of Nanosensors
20(1)
1.15 Physical, Chemical, and Biological Nanosensors
21(1)
1.16 Some Examples of Nanosensors
22(1)
1.16.1 Common Nanosensors
22(1)
1.16.2 Carbon Nanotube-Based Nanosensors
22(1)
1.16.3 Nanoscaled Thin-Film Sensors
22(1)
1.16.4 Microcantilever- and Nanocanti lever-Enabled Nanosensors
22(1)
1.17 Getting Familiar with Analytical and Characterization Tools: Microscopic Techniques to View Nanomaterials and Nanosensors
22(3)
1.17.1 Scanning Electron Microscope
23(1)
1.17.2 Transmission Electron Microscope
23(1)
1.17.3 Scanning Tunneling Microscope
23(1)
1.17.4 Atomic Force Microscope
23(2)
1.18 Spectroscopic Techniques for Analyzing Chemical Composition of Nanomaterials and Nanosensors
25(3)
1.18.1 Infrared Spectroscopy
25(1)
1.18.2 Ultraviolet-Visible Spectroscopy
26(1)
1.18.3 Raman Spectroscopy
27(1)
1.18.4 Energy-Dispersive X-Ray Spectroscopy (EDX)
27(1)
1.18.5 Auger Electron Spectroscopy
27(1)
1.18.6 X-Ray Diffraction
27(1)
1.18.7 X-Ray Photoelectron Spectroscopy or Electron Spectroscopy for Chemical Analysis
27(1)
1.18.8 Secondary Ion Mass Spectrometry
28(1)
1.19 The Displacement Nanosensor: STM
28(6)
1.19.1 Principle of Operation
28(1)
1.19.2 Transmission Coefficient
29(3)
1.19.3 Tunneling Current
32(1)
1.19.4 Measurements with STM
33(1)
1.19.4.1 Topography
33(1)
1.19.4.2 Density of States
33(1)
1.19.4.3 Linecut
34(1)
1.19.4.4 DOS Map
34(1)
1.20 The Force Nanosensor: AFM
34(7)
1.20.1 Operating Principle
34(1)
1.20.2 Lennard-Jones Potential and the Van der Waals Forces
34(2)
1.20.3 Other Forces and Potentials
36(1)
1.20.4 Force Sensor (Cantilever) and Force Measurement
37(1)
1.20.5 Static and Dynamic Atomic Force Microscopy
38(1)
1.20.6 Classification of Modes of Operation of AFM on the Basis of Contact
38(1)
1.20.6.1 Contact Mode
38(1)
1.20.6.2 Noncontact Mode
39(1)
1.20.6.3 Tapping Mode (Intermittent-Contact Mode)
39(1)
1.20.7 Frequency-Modulation Atomic Force Microscopy
39(1)
1.20.8 Generic Calculation
40(1)
1.21 Outline and Organization of the Book
41(1)
1.22 Discussion and Conclusions
42(5)
Review Exercises
42(1)
References
43(4)
Part II Nanomaterials and Micro/Nanofabrication Facilities
2 Materials for Nanosensors
47(30)
2.1 Introduction
47(1)
2.2 Nanoparticles or Nanoscale Particles, the Importance of the Intermediate Regime between Atoms and Molecules, and Bulk Matter
47(1)
2.3 Classification of Nanoparticles on the Basis of Their Composition and Occurrence
47(1)
2.4 Core-/Shell-Structured Nanoparticles
48(1)
2.4.1 Inorganic Core/Shell Nanoparticles
48(1)
2.4.2 Organic--Inorganic Hybrid Core/Shell Nanoparticles
49(1)
2.5 Shape Dependence of Properties at the Nanoscale
49(1)
2.6 Dependence of Properties of Nanoparticles on Particle Size
49(1)
2.7 Surface Energy of a Solid
49(1)
2.8 Metallic Nanoparticles and Plasmons
50(3)
2.8.1 Surface Plasmon Resonance on Bulk Metals
51(2)
2.8.2 Surface Plasmon Band Phenomenon in Metal Nanoparticles
53(1)
2.9 Optical Properties of Bulk Metals and Metallic Nanoparticles
53(3)
2.9.1 Light Absorption by Bulk Metals and Metallic Nanoparticles
53(3)
2.9.2 Light Scattering by Nanoparticles
56(1)
2.10 Parameters Controlling the Position of Surface Plasmon Band of Nanoparticles
56(1)
2.10.1 Effect of the Surrounding Dielectric Medium
56(1)
2.10.2 Influence of Agglomeration-Preventing Ligands and Stabilizers
57(1)
2.10.3 Effect of Nanoparticle Size and Shape
57(1)
2.10.4 Compositional Effect
57(1)
2.11 Quantum Confinement
57(5)
2.11.1 Quantum Confinement in Metals
58(1)
2.11.2 Quantum Confinement in Semiconductors
58(1)
2.11.3 Bandgap Energies
59(1)
2.11.4 Bandgap Behavior Explanation by Particle-in-a-One-Dimensional Box Model of Electron Behavior
59(3)
2.12 Quantum Dots
62(6)
2.12.1 Fundamentals
62(1)
2.12.2 Tight-Binding Approach to Optical Bandgap (Exciton Energy) Versus Quantum Dot Size
63(2)
2.12.3 Comparison of Quantum Dots With Organic Fluorophores
65(2)
2.12.4 Types of Quantum Dots Depending on Composition
67(1)
2.12.5 Classification of Quantum Dots Based on Structure
67(1)
2.12.6 Capping Molecules or Ligands on the Surfaces of Quantum Dots
67(1)
2.13 Carbon Nanotubes
68(3)
2.13.1 What Are Carbon Nanotubes?
68(1)
2.13.2 Structure of Graphene
69(1)
2.13.3 Structure of SWCNTs
69(1)
2.13.4 Mechanical Properties of CNTs
70(1)
2.13.5 Electrical, Electronic, and Magnetic Properties of CNTs
71(1)
2.14 Inorganic Nanowires
71(1)
2.15 Nanoporous Materials
71(2)
2.15.1 Nanoporous Silicon
72(1)
2.15.2 Nanoporous Alumina
72(1)
2.15.3 Nano-Grained Thin Films
73(1)
2.16 Discussion and Conclusions
73(4)
Review Exercises
73(1)
References
74(3)
3 Nanosensor Laboratory
77(40)
3.1 Introduction
77(1)
3.2 Nanotechnology Division
77(7)
3.2.1 Synthesis of Metal Nanoparticles
77(1)
3.2.1.1 Gold Nanoparticles
77(1)
3.2.1.2 Silver Nanoparticles
77(1)
3.2.1.3 Platinum Nanoparticles
78(1)
3.2.1.4 Palladium Nanoparticles
78(1)
3.2.2 Synthesis of Semiconductor Nanoparticles
78(1)
3.2.3 Synthesis of Semiconductor Nanocrystals: Quantum Dots
79(1)
3.2.3.1 CdSe/ZnS Core/Shell QDs
79(1)
3.2.3.2 CdSe/CdS Core/Shell QDs
79(1)
3.2.3.3 PbS and PbS/CdS Core/Shell QDs
79(1)
3.2.4 Synthesis of Metal Oxide Nanoparticles
80(1)
3.2.5 Synthesis of Carbon Nanotubes
81(1)
3.2.5.1 Arc Discharge Method of CNT Production
81(1)
3.2.5.2 Laser Ablation Method of CNT Production
82(1)
3.2.5.3 Chemical Vapor Deposition Method of CNT Production
82(2)
3.2.5.4 Difficulties Faced with Carbon Nanotubes
84(1)
3.3 Micro- and Nanoelectronics Division
84(16)
3.3.1 Semiconductor Clean Room
84(1)
3.3.2 Silicon Single-Crystal Growth and Wafer Production
85(1)
3.3.3 Molecular Beam Epitaxy
85(1)
3.3.4 Mask Making
85(1)
3.3.5 Thermal Oxidation
86(1)
3.3.6 Diffusion of Impurities in a Semiconductor
87(2)
3.3.7 Ion Implantation
89(1)
3.3.8 Photolithography
90(1)
3.3.8.1 Physical Limits
91(1)
3.3.8.2 Optical Lithography
92(1)
3.3.8.3 Electron-Beam Lithography
92(1)
3.3.8.4 X-Ray Lithography
92(1)
3.3.8.5 Dip-Pen Nanolithography
92(1)
3.3.8.6 Nanoimprint Lithography
92(1)
3.3.8.7 Nanosphere Lithography
93(1)
3.3.9 Chemical Vapor Deposition
93(1)
3.3.10 Wet Chemical Etching and Common Etchants
94(1)
3.3.11 Reactive Ion Etching
95(1)
3.3.12 Focused Ion Beam Etching and Deposition
96(1)
3.3.13 Metallization
96(1)
3.3.14 Dicing, Wire Bonding, and Encapsulation
96(1)
3.3.15 IC Downscaling: Special Technologies and Processes
97(1)
3.3.15.1 Downscaling Trends
97(1)
3.3.15.2 SOI-MOSFETs
97(1)
3.3.15.3 SIMOX Process
98(1)
3.3.15.4 Smart Cut Process
98(1)
3.3.15.5 Strained Silicon Process
98(1)
3.3.15.6 Top-Down and Bottom-Up Approaches
99(1)
3.3.15.7 DNA Electronics
99(1)
3.3.15.8 Spintronics
99(1)
3.4 MEMS and NEMS Division
100(5)
3.4.1 Surface and Bulk Micromachining
100(1)
3.4.2 Machining by Wet and Dry Etching Techniques
100(1)
3.4.3 Deep Reactive-Ion Etching
101(2)
3.4.4 Front- and Back-Side Mask Alignment
103(1)
3.4.5 Multiple Wafer Bonding and Glass-Silicon Bonding
103(1)
3.4.6 Wafer Lapping
103(1)
3.4.7 Chemical Mechanical Polishing
103(1)
3.4.8 Electroplating
104(1)
3.4.9 LIGA Process
104(1)
3.4.10 Micro-Injection Molding
104(1)
3.4.11 Hot Embossing and Electroforming
105(1)
3.4.12 Combination of MEMS/NEMS and CMOS Processes
105(1)
3.5 Biochemistry Division
105(5)
3.5.1 Surface Functionalization and Biofunctionalization of Nanomaterials
105(1)
3.5.2 Immobilization of Biological Elements
106(2)
3.5.3 Protocols for Attachment of Antibodies on Sensors
108(1)
3.5.4 Functionalization of CNTs for Biological Applications
109(1)
3.5.5 Water Solubility of Quantum Dots
109(1)
3.5.6 Low Cytotoxicity Coatings
109(1)
3.6 Chemistry Division
110(1)
3.6.1 Nanoparticle Thin-Film Deposition
110(1)
3.6.2 Polymer Coatings in Nano Gas Sensors
110(1)
3.6.3 Metallic Nanoparticle Functionalization of Si Nanowires for Gas Sensing Applications
110(1)
3.7 Nanosensor Characterization Division
110(1)
3.8 Nanosensor Powering, Signal Processing, and Communication Division
110(2)
3.8.1 Power Unit
111(1)
3.8.1.1 Lithium Nanobatteries
111(1)
3.8.1.2 Self-Powered Nanogenerators
111(1)
3.8.1.3 Energy Harvesting from the Environment
111(1)
3.8.1.4 Synthetic Chemical Batteries Based on Adenosine Triphosphate
111(1)
3.8.2 Signal Processing Unit
111(1)
3.8.3 Integrated Nanosensor Systems
112(1)
3.8.4 Wireless Nanosensor Networks
112(1)
3.9 Discussion and Conclusions
112(5)
Review Exercises
112(1)
References
113(4)
Part III Physical Nanosensors
4 Mechanical Nanosensors
117(34)
4.1 Introduction
117(1)
4.2 Nanogram Mass Sensing by Quartz Crystal Microbalance
117(3)
4.3 Attogram (10-18g) and Zeptogram (10-21g) Mass Sensing by MEMS/NEMS Resonators
120(13)
4.3.1 Microcantilever Definitions and Theory
120(5)
4.3.1.1 Resonance Frequency Formula
125(4)
4.3.1.2 Deflection Formula
129(1)
4.3.2 Energy Dissipation and Q-Factor of Cantilever
130(1)
4.3.3 Noise of Cantilever and Its Mass Detection Limit
131(1)
4.3.4 Doubly Clamped and Free-Free Beam Resonators
132(1)
4.4 Electron Tunneling Displacement Nanosensor
133(1)
4.5 Coulomb Blockade Electrometer-Based Nanosensor
134(1)
4.5.1 Coulomb Blockade Effect
134(1)
4.5.2 Comparison with Tunneling Sensors
135(1)
4.6 Nanometer-Scale Displacement Sensing by Single-Electron Transistor
135(1)
4.7 Magnetomotive Displacement Nanosensor
136(1)
4.8 Piezoresistive and Piezoelectric Displacement Nanosensors
137(1)
4.9 Optical Displacement Nanosensor
137(1)
4.10 Femtonewton Force Sensors Using Doubly Clamped Suspended Carbon Nanotube Resonators
138(2)
4.11 Suspended CNT Electromechanical Sensors for Displacement and Force
140(2)
4.12 Membrane-Based CNT Electromechanical Pressure Sensor
142(1)
4.13 Tunnel Effect Accelerometer
143(2)
4.13.1 Principle of Motion Detection
143(1)
4.13.2 Construction and Working
143(1)
4.13.3 Micromachined Accelerometer
144(1)
4.14 NEMS Accelerometer
145(1)
4.15 Silicon Nanowire Accelerometer
145(1)
4.16 CNT Flow Sensor for Ionic Solutions
146(1)
4.17 Discussion and Conclusions
147(4)
Review Exercises
147(2)
References
149(2)
5 Thermal Nanosensors
151(22)
5.1 Introduction
151(1)
5.2 Nanoscale Thermocouple Formed by Tungsten and Platinum Nanosized Strips
151(1)
5.3 Resistive Thermal Nanosensor Fabricated by Focused-Ion-Beam Chemical-Vapor-Deposition (FIB-CVD)
152(1)
5.4 Carbon "Nanowire-on-Diamond" Resistive Temperature Nanosensor
152(1)
5.5 Carbon Nanotube Grown on Nickel Film as a Resistive Low-temperature (10--300 K) Nanosensor
152(1)
5.6 Laterally Grown CNTs between Two Microelectrodes as a Resistive Temperature Nanosensor
153(1)
5.7 Silicon Nanowire Temperature Nanosensors: Resistors and Diode Structures
154(1)
5.8 Ratiometric Fluorescent Nanoparticles for Temperature Sensing
155(2)
5.9 Er3+/Yb3+ Co-Doped Gd2O3 Nanophosphor as a Temperature Nanosensor, Using Fluorescence Intensity Ratio Technique
157(2)
5.10 Optical Heating of Yb3+-Er3+ Co-Doped Fluoride Nanoparticles and Distant Temperature Sensing through Luminescence
159(1)
5.11 Porphyrin-Containing Copolymer as a Thermochromic Nanosensor
159(1)
5.12 Silicon-Micromachined Scanning Thermal Profiler (STP)
160(1)
5.13 Superconducting Hot Electron Nanobolometers
161(1)
5.14 Thermal Convective Accelerometer Using CNT Sensing Element
162(1)
5.15 Single-Walled Carbon Nanotube Sensor for Airflow Measurement
163(1)
5.16 Vacuum Pressure and Flow Velocity Sensors, Using Batch-Processed CNT Wall
163(1)
5.17 Nanogap Pirani Gauge
164(1)
5.18 Carbon Nanotube-Polymer Nanocomposite as a Conductivity Response Infrared Nanosensor
165(1)
5.19 Nanocalorimetry
166(2)
5.20 Discussion and Conclusions
168(5)
Review Exercises
170(1)
References
170(3)
6 Optical Nanosensors
173(34)
6.1 Introduction
173(1)
6.2 Noble-Metal Nanoparticles With LSPR and UV-Visible Spectroscopy
174(2)
6.3 Nanosensors Based on Surface-Enhanced Raman Scattering
176(2)
6.4 Colloidal SPR Colorimetric Gold Nanoparticle Spectrophotometric Sensor
178(3)
6.5 Fiber-Optic Nanosensors
181(5)
6.5.1 Fabry-Perot Reflectometric Optochemical Nanosensor, Using Optical Fibers and SWCNTs
181(3)
6.5.2 In-Fiber Nanocavity Sensor
184(1)
6.5.3 Fiber-Optic Nanosensors for Probing Living Cells
185(1)
6.6 Nanograting-Based Optical Accelerometer
186(1)
6.7 Fluorescent pH-Sensitive Nanosensors
186(2)
6.7.1 Renewable Glass Nanopipette with Fluorescent Dye Molecules
186(1)
6.7.2 Ratiometric pH Nanosensor
187(1)
6.7.3 Ph-Sensitive Microcapsules With Nanoparticle Incorporation in the Walls
188(1)
6.8 Disadvantages of Optical Fiber and Fluorescent Nanosensors for Living Cell Studies
188(1)
6.9 PEBBLE Nanosensors to Measure the Intracellular Environment
189(3)
6.10 Quantum Dots as Fluorescent Labels
192(3)
6.11 Quantum Dot FRET-Based Probes
195(5)
6.11.1 QD-FRET Protein Sensor
197(1)
6.11.2 QD-FRET Protease Sensor
197(1)
6.11.3 QD-FRET Maltose Sensor
197(1)
6.11.4 Sensor for Determining the Dissociation Constant (KJ between Rev and RRE
198(2)
6.12 Electrochemiluminescent Nanosensors for Remote Detection
200(1)
6.13 Crossed Zinc Oxide Nanorods As Resistive UV-Nanosensors
200(2)
6.14 Discussion and Conclusions
202(5)
Review Exercises
202(1)
References
203(4)
7 Magnetic Nanosensors
207(32)
7.1 Introduction
207(1)
7.2 Magnetoresistance Sensors
207(7)
7.2.1 Ordinary Magnetoresistance: The Hall Effect
208(1)
7.2.2 Anisotropic Magnetoresistance
208(1)
7.2.3 Giant Magnetoresistance
208(1)
7.2.3.1 Scientific Explanation of GMR
209(4)
7.2.3.2 Simple Analogies of GMR
213(1)
7.2.3.3 Optimizing Parameters
213(1)
7.2.3.4 GMR Sensor Structures
213(1)
7.3 Tunneling Magnetoresistance
214(1)
7.4 Limitations, Advantages, and Applications of GMR and TMR Sensors
215(1)
7.4.1 Shortcomings
215(1)
7.4.2 Advantages
215(1)
7.4.3 Applications
215(1)
7.5 Magnetic Nanoparticle Probes for Studying Molecular Interactions
215(7)
7.5.1 DNA Analysis
219(1)
7.5.2 Protein Detection
220(1)
7.5.3 Virus Detection
220(1)
7.5.4 Telomerase Activity Analysis
221(1)
7.6 Protease-Specific Nanosensors for MRI
222(1)
7.7 Magnetic Relaxation Switch Immunosensors
223(1)
7.8 Magneto Nanosensor Microarray Biochip
223(8)
7.8.1 Rationale and Motivation
223(1)
7.8.2 Sensor Choice, Design Considerations, Passivation, and Magnetic Nanotag Issues
224(2)
7.8.3 Understanding Magnetic Array Operation
226(1)
7.8.4 Influence of Reaction Conditions on the Sensor
227(1)
7.8.5 DNA and Tumor Marker Detection
227(2)
7.8.6 GMR-Based Detection System With Zeptomole (10-21 Mol) Sensitivity
229(1)
7.8.7 Bead ARray Counter (BARC) Biosensor
230(1)
7.9 Needle-Type SV-GMR Sensor for Biomedical Applications
231(1)
7.10 Superconductive Magnetic Nanosensor
232(1)
7.11 Electron Tunneling-Based Magnetic Field Sensor
232(1)
7.12 Nanowire Magnetic Compass and Position Sensor
233(1)
7.13 Discussion and Conclusions
234(5)
Review Exercises
234(1)
References
235(4)
Part IV Chemical and Biological Nanosensors
8 Chemical Nanosensors
239(28)
8.1 Introduction
239(1)
8.2 Gas Sensors Based on Nanomaterials
239(1)
8.3 Metallic Nanoparticle-Based Gas Sensors
240(1)
8.4 Metal Oxide Gas Sensors
240(9)
8.4.1 Sensing Mechanism of Metal Oxide Sensors
242(2)
8.4.2 Sensitivity Controlling Parameters and the Influence of Heat Treatment
244(4)
8.4.3 Effect of Additives on Sensor Response
248(1)
8.5 Carbon Nanotube Gas Sensors
249(4)
8.5.1 Gas-Sensing Properties of CNTs
249(1)
8.5.2 Responses of SWCNTs and MWCNTs
250(1)
8.5.3 Modification of CNTs
250(1)
8.5.4 CNT-Based FET-Type Sensor
251(1)
8.5.5 MWCNTs/SnO2 Ammonia Sensor
251(1)
8.5.6 CNT-Based Acoustic Gas Sensor
252(1)
8.6 Porous Silicon-Based Gas Sensor
253(1)
8.7 Thin Organic Polymer Film-Based Gas Sensors
253(1)
8.8 Electrospun Polymer Nanofibers as Humidity Sensors
253(1)
8.9 Toward Large Nanosensor Arrays and Nanoelectronic Nose
254(1)
8.10 CNT-, Nanowire- and Nanobelt-Based Chemical Nanosensors
255(4)
8.10.1 CNT-Based ISFET for Nano pH Sensor
255(1)
8.10.2 NW Nanosensor for pH Detection
255(2)
8.10.3 ZnS/Silica Nanocable FET pH Sensor
257(1)
8.10.4 Bridging Nanowire As Vapor Sensor
258(1)
8.10.5 Palladium Functionalized Si NW H2 Sensor
258(1)
8.10.6 Polymer-Functionalized Piezoelectric-FET Humidity Nanosensor
258(1)
8.11 Optochemical Nanosensors
259(3)
8.11.1 Low-Potential Quantum Dot ECL Sensor for Metal Ion
259(1)
8.11.2 BSA-Activated CdTe QD Nanosensor for Sb3t Ion
260(1)
8.11.3 Functionalized CdSe/ZnS QD Nanosensor for Hg(II) Ion
261(1)
8.11.4 Marine Diatom Gas Sensors
262(1)
8.12 Discussion and Conclusions
262(5)
Review Exercises
262(2)
References
264(3)
9 Nanobiosensors
267(42)
9.1 Introduction
267(1)
9.2 Nanoparticle-Based Electrochemical Biosensors
267(9)
9.2.1 Nitric Oxide Electrochemical Sensor
270(1)
9.2.2 Determination of Dopamine, Uric Acid, and Ascorbic Acid
271(1)
9.2.3 Detection of CO
271(1)
9.2.4 Glucose Detection
272(1)
9.2.5 Gold Nanoparticle DNA Biosensor
273(2)
9.2.6 Monitoring Allergen-Antibody Reactions
275(1)
9.2.7 Hepatitis B Immunosensor
275(1)
9.2.8 Carcinoembryonic Antigen Detection
275(1)
9.2.9 Escherichia coli Detection in Milk Samples
276(1)
9.3 CNT-Based Electrochemical Biosensors
276(9)
9.3.1 Oxidation of Dopamine
278(3)
9.3.2 Direct Electrochemistry or Electrocatalysis of Catalase
281(1)
9.3.3 CNT-Based Electrochemical DNA Biosensor
281(1)
9.3.4 Glucose Biosensor
281(2)
9.3.5 Cholesterol Biosensor
283(1)
9.3.6 H2O2 Biosensor
284(1)
9.4 Functionalization of CNTs for Biosensor Fabrication
285(1)
9.5 QD (Quantum Dot)-Based Electrochemical Biosensors
285(2)
9.5.1 Uric Acid Biosensor
285(1)
9.5.2 Hydrogen Peroxide Biosensor
285(1)
9.5.3 CdS Nanoparticles Modified Electrode for Glucose Detection
286(1)
9.5.4 QD Light-Triggered Glucose Detection
286(1)
9.6 Nanotube and Nanowire-Based FET Nanobiosensors
287(2)
9.6.1 Nanotube versus Nanowire
287(1)
9.6.2 Functionalization of SiNWs
287(2)
9.6.3 DNA and Protein Detection
289(1)
9.7 Cantilever-Based Nanobiosensors
289(6)
9.7.1 Biofunctionalization of the Microcantilever Surface
291(2)
9.7.2 Biosensing Applications
293(2)
9.8 Optical Nanobiosensors
295(5)
9.8.1 Aptamers
295(2)
9.8.2 Aptamer-Modified Au Nanoparticles as a Colorimetric Adenosine Nanosensor
297(1)
9.8.3 Aptamer-Based Multicolor Fluorescent Gold Nanoprobe for Simultaneous Adenosine, Potassium Ion, and Cocaine Detection
297(1)
9.8.4 Aptamer-Capped QD as a Thrombin Nanosensor
298(1)
9.8.5 QD Aptameric Cocaine Nanosensor
299(1)
9.9 Biochips (or Microarrays)
300(1)
9.10 Discussion and Conclusions
301(8)
Review Exercises
301(2)
References
303(6)
Part V Emerging Applications of Nanosensors
10 Nanosensors for Societal Benefits
309(56)
10.1 Air Pollutants
309(1)
10.2 Nanosensors for Particulate Matter Detection
309(2)
10.2.1 Cantilever-Based Airborne Nanoparticle Detector (CANTOR)
309(1)
10.2.2 Nanomechanical Resonant Filter-Fiber
309(1)
10.2.3 Aerosol Sensing by Voltage Modulation
309(1)
10.2.4 MEMS-Based Particle Detection System
310(1)
10.3 Nanosensors for Carbon Monoxide Detection
311(2)
10.3.1 Au Nanoparticle-Based Miniature CO Detector
312(1)
10.3.2 CuO Nanowire Sensor on Micro-Hotplate
312(1)
10.3.3 ZnO Nanowall-Based Conductometric Sensor
312(1)
10.3.4 ZnO NPs-Loaded 3D Reduced Graphene Oxide (ZnO/3D-rGO) Sensor
312(1)
10.3.5 Europium-Doped Cerium Oxide Nanoparticles Thick-Film Sensor
312(1)
10.3.6 Pt-decorated SnO2 Nanoparticles Sensor
313(1)
10.4 Nanosensors for Sulfur Dioxide Detection
313(1)
10.4.1 Tungsten Oxide Nanostructures-Based Sensor
313(1)
10.4.2 SnO2 Thin-Film Sensor with Nanoclusters of Metal Oxide Modifiers/Catalysts
313(1)
10.4.3 Fluorescence Nanoprobe
313(1)
10.4.4 Niobium-Loaded Tungsten Oxide Film Sensor
313(1)
10.4.5 Nickel Nanowall-Based Sensor
313(1)
10.5 Nanosensors for Nitrogen Dioxide Detection
313(1)
10.5.1 SnO2 Nanoribbon Sensor
313(1)
10.5.2 Tris(hydroxymethyl) Aminomethane (THMA)-Capped ZnO Nanoparticle-Coated ZnO Nanowire Sensor
313(1)
10.5.3 In2O3-Sensitized CuO-ZnO Nanoparticle Composite Film Sensor
313(1)
10.5.4 UV-Activated, Pt-Decorated Single-Crystal ZnO Nanowire Sensor
313(1)
10.6 Nanosensors for Ozone Detection
314(1)
10.6.1 SnO2/SWCNT Hybrid Thin-Film Sensor
314(1)
10.6.2 Nanocrystalline SiT1-xFexO3 (STF) Thin-Film Sensor
314(1)
10.6.3 ZnO Nanoparticle Sensor
314(1)
10.6.4 Pd-Decorated MWCNT Sensor
314(1)
10.6.5 UV-Illuminated ZnO Nanocrystal Sensor
314(1)
10.7 Nanosensors for VOC Detection
314(2)
10.7.1 Chemiresistive Sensor Using Gold Nanoparticles
314(1)
10.7.2 Metal-Organic Framework (MOF) Nanoparticle-Based Capacitive Sensor
315(1)
10.7.3 Al-Doped ZnO Nanowire {(ZnO:AI)NW}Sensor
315(1)
10.7.4 Nickel-Doped Tin Oxide Nanoparticle (Ni-SnO2 NP) Sensor for Formaldehyde
315(1)
10.7.5 Palladium Nanoparticle (PdNP)/Nickel Oxide (NiO) Thin - Film/Palladium (Pd) Thin-Film Sensor for Formaldehyde
315(1)
10.7.6 Surface Acoustic Wave (SAW) Sensor With Polymer-Sensitive Film Containing Embedded Nanoparticles
315(1)
10.7.7 Resorcinol-Functionalized Gold Nanoparticle Colorimetric Probe for Formaldehyde Detection
316(1)
10.8 Nanosensors for Ammonia Detection
316(1)
10.8.1 Polyaniline Nanoparticle Conductimetric Sensor
316(1)
10.8.2 MoO3 Nanoparticle Gel-Coated Sensor
316(1)
10.8.3 ZnO:Eu2+ Fluorescence Quenching Nanoparticle-Based Optical Sensor
316(1)
10.8.4 Pt Nanoparticle (Pt NP)-Decorated WO, Sensor
316(1)
10.9 Water Pollutants
317(1)
10.10 Nanosensors for Detection of Escherichia coli 0157:H7
317(5)
10.10.1 Magnetoelastic Sensor Amplified With Chitosan-Modified Fe3O4 Magnetic Nanoparticles (CMNPs)
317(2)
10.10.2 Mercaptoethylamine (MEA)-Modified Gold Nanoparticle Sensor
319(1)
10.10.3 Cysteine-Capped Gold Nanoparticle Sensor
319(1)
10.10.4 Three Nanoparticles-Based Biosensor (Iron Oxide, Gold, and Lead Sulfide)
319(1)
10.10.5 Magneto-Fluorescent Nanosensor (MfnS)
319(2)
10.10.6 Signal-Off Impedimetric Nanosensor With a Sensitivity Enhancement by Captured Nanoparticles
321(1)
10.10.7 An Impedimetric Biosensor for E. coli 0157:H7 Based on the Use of Self-Assembled Gold Nanoparticles (AuNPs) and Protein G-Thiol (PrG-Thiol) Scaffold
321(1)
10.10.8 Gold Nanoparticles Surface Plasmon Resonance (AuNP SPR) Chip
321(1)
10.10.9 Microfluidic Nanosensor Working on Aggregation of Gold Nanoparticles and Imaging by Smartphone
321(1)
10.11 Nanosensors for Detection of Vibrio cholerae and Cholera Toxin
322(2)
10.11.1 Lactose-Stabilized Gold Nanoparticles
322(1)
10.11.2 Ssdna/Nanostructured MgO (nMgO)/Indium Tin Oxide (ITO) Bioelectrode
323(1)
10.11.3 Nanostructured MgO (nMgO) Photoluminescence Sensor
323(1)
10.11.4 Lyophilized Gold Nanoparticle/Polystyrene-Co-Acrylic Acid-Based Genosensor
323(1)
10.11.5 Polystyrene-co-Acrylic Acid (PSA) Latex Nanospheres
324(1)
10.11.6 Graphene Nanosheet Bioelectrode with Lipid Film Containing Ganglioside GM1 Receptor of Cholera Toxin
324(1)
10.12 Nanosensors for Detection of Pseudomonas aeruginosa
324(2)
10.12.1 Probe-Modified Magnetic Nanoparticles-Based Chemiluminescent Sensor
324(1)
10.12.2 Reduced Graphene Electrode Decorated with Gold Nanoparticles (AuNPs)
325(1)
10.12.3 Polyaniline(PANI)/Gold Nanoparticle (AuNP) Decorated Indium Tin Oxide (ITO) Electrode
325(1)
10.13 Nanosensors for Detection of Legionella pneumophila
326(1)
10.13.1 ZnO Nanorod (ZnO-NR) Matrix-Based Immunosensor
326(1)
10.13.2 Azimuthally-Controlled Gold Grating-Coupling Surface Plasmon Resonance (GC-SPR) Platform
326(1)
10.14 Nanosensors for Detection of Mercury Ions
327(1)
10.14.1 Thymine Derivative (N-T) Decorated Gold Nanoparticle Sensor
327(1)
10.14.2 Smartphone-Based Microwell Reader (MR S-phone) AuNP-Aptamer Colorimetric Sensor
327(1)
10.14.3 Starch-Stabilized Silver Nanoparticle-Based Colorimetric Sensor
327(1)
10.14.4 Chitosan-Stabilized Silver Nanoparticle (Chi-AgNP)-Based Colorimetric Sensor
328(1)
10.15 Nanosensors for Detection of Lead Ions
328(3)
10.15.1 Glutathione (GSH)-Stabilized Silver Nanoparticle (AgNP) Sensor
328(2)
10.15.2 Maleic acid (MA)-Functionalized Gold Nanoparticle (AuNP) Sensor
330(1)
10.15.3 Label-Free Gold Nanoparticles (AuNPs) in the Presence of Glutathione (GSH)
330(1)
10.15.4 Gold Nanoparticles (AuNPs) Conjugated with Thioctic Acid (TA) and Fluorescent Dansyl Hydrazine (DNS) Molecules
331(1)
10.15.5 Valine-Capped Gold Nanoparticle Sensor
331(1)
10.15.6 Polyvinyl Alcohol (PVA)-Stabilized Colloidal Silver Nanoparticles (Ag NPs) in the Presence of Dithizone
331(1)
10.15.7 Gold Nanoparticle (AuNP)-Graphene (GR)-Modified Glassy Carbon Electrode (GCE)
331(1)
10.16 Nanosensors for Detection of As(III) ions
331(2)
10.16.1 Portable Surface-Enhanced Raman Spectroscopy (SERS) System
331(1)
10.16.2 Surface Plasmon Resonance (SPR) Nanosensor
331(1)
10.16.3 FePt Bimetallic Nanoparticle (FePt-NP) Sensor
332(1)
10.16.4 Gold Nanoparticles (AuNPs)-Modified Glassy Carbon Electrode (GCE) for Co-Detection of As(III) and Se(IV)
332(1)
10.16.5 Silver Nanoparticle-Modified Gold Electrode
332(1)
10.16.6 Carbon Nanoparticle (CNP)/Gold Nanoparticle (AuNP)-Modified Glassy Carbon Electrode (GCE) Aptasensor
333(1)
10.16.7 Gold Nanostructured Electrode on a Gold Foil (Au/GNE)
333(1)
10.16.8 Bimetallic Nanoparticle (NP) and [ Bimetallic NP + Polyaniline (PANI)] Composite-Modified Screen-Printed Carbon Electrode (SPCE)
333(1)
10.16.9 Ranolazine (Rano)-Functionalized Copper Nanoparticles (CuNPs)
333(1)
10.17 Nanosensors for Detection of Cr(VI) Ions
333(1)
10.17.1 Colloidal Gold Nanoparticle (AuNP) Probe-Based Immunochromatographic Sensor
333(1)
10.17.2 Amyloid-Fibril-Based Sensor
333(1)
10.17.3 Gold Nanoparticle (AuNP)-Decorated Titanium Dioxide Nanotubes (TiO2NTs) on a Ti Substrate
334(1)
10.18 Nanosensors for Detection of Cd2+ ions
334(4)
10.18.1 Gold Nanoparticle Amalgam (AuNPA)-Modified Screen-Printed Electrode (SPE)
334(1)
10.18.2 Turn-On Surface-Enhanced Raman Scattering (SERS) Sensor
334(1)
10.18.3 Thioglycerol (TG)-Capped CdSe Quantum Dots (QDs)
335(1)
10.18.4 CdTe Quantum (CdTe QD) Dot-Based Hybrid Probe
335(1)
10.18.5 Aptamer-Functionalized Gold Nanoparticle (AuNP) Sensor
336(2)
10.19 Nanosensors for Detection of Cu2+ ions
338(1)
10.19.1 Azide and Terminal Alkyne-Functionalized Gold Nanoparticle (AuNP) Sensor
338(1)
10.19.2 Cadmium Sulfide Nanoparticle (CdS NP)-Gold Quantum Dot (Au QD) Sensor
339(1)
10.19.3 Multiple Antibiotic Resistance Regulator (MarR)-Functionalized Gold Nanoparticle (AuNP) Sensor
339(1)
10.19.4 Casein Peptide-Functionalized Silver Nanoparticle (AgNP) Sensor
339(1)
10.20 Nanosensors for Detection of Pesticides
339(12)
10.20.1 DDT (Dichlorodiphenyltrichloroethane)
339(2)
10.20.2 2,4-Dichlorophenoxyacetic Acid (2,4-D)
341(1)
10.20.3 Carbofuran (CBF)
341(1)
10.20.3.1 Amperometric Immunosensor
341(2)
10.20.3.2 Molecularly Imprinted Polymer (MIP)-Reduced Graphene Oxide and Gold Nanoparticle (rGO@AuNP)-Modified Glassy Carbon Electrode (GCE)
343(1)
10.20.3.3 Gold Nanoparticle (AuNP)-Based Surface Enhanced Raman Spectroscopy (SERS)
344(1)
10.20.4 Methomyl
344(1)
10.20.5 Dimethoate
344(1)
10.20.6 Atrazine
344(1)
10.20.6.1 Gold Nanoparticle (AuNP)-Modified Gold (Au) Electrode
344(1)
10.20.6.2 Cysteamine (Cys)-Functionalized Gold Nanoparticles (AuNPs)
345(1)
10.20.6.3 Nitrogen-Doped Carbon Quantum Dot-Based Luminescent Probe
346(1)
10.20.7 Paraoxon-Ethyl
346(1)
10.20.8 Acetamiprid
347(1)
10.20.9 Hexachlorobenzene (HCB), Perchlorobenzene
347(2)
10.20.10 Malathion (MLT): Diethyl 2-[ (dimethoxyphosphorothioyl)sulfanyl]butanedioate
349(1)
10.20.11 Dithiocarbamate (DTC) Pesticide Group
349(2)
10.21 Discussion and Conclusions
351(14)
10.21.1 Particulate Matter
351(1)
10.21.2 Gases
351(1)
10.21.3 Pathogens
351(1)
10.21.4 Metals
351(1)
10.21.5 Pesticides
352(1)
Review Exercises
352(9)
References
361(4)
11 Nanosensors for Industrial Applications
365(46)
11.1 Nanosensors for Detection of Food-Borne Pathogenic Bacteria
365(5)
11.1.1 Salmonella typhimurium
365(1)
11.1.1.1 DNA Aptamers and Magnetic Nanoparticle (MNP)-Based Colorimetric Sensor
365(1)
11.1.1.2 Strip Sensor Using Gold Nanoparticle (AuNP)-Labeled Genus-Specific Anti-Lipopolysaccharide (LPS) Monoclonal Antibody (mAb)
365(1)
11.1.2 Clostridium perfringens
366(1)
11.1.3 Listeria monocytogenes
367(1)
11.1.3.1 Immunomagnetic Nanoparticles (IMNPs) with Microfluidic Chip and Interdigitated Microelectrodes
368(1)
11.1.3.2 Gold Nanoparticle (AuNP)/DNA Colorimetric Probe Assay
368(1)
11.1.4 Campylobacter jejuni
369(1)
11.1.5 Yersinia enterocolitica
369(1)
11.2 Nanosensors for Detection of Food-Borne Toxins
370(4)
11.2.1 Botulinum Neurotoxin Serotype A (BoNT/A)
370(1)
11.2.1.1 Gold Nanodendrite (AuND)/Chitosan Nanoparticle (CSNP)-Modified Screen-Printed Carbon Electrode (SPCE) for Botulinum Neurotoxin Serotype A (BoNT/A)
371(1)
11.2.1.2 Peptide-Functionalized Gold Nanoparticles (AuNPs)-Based Colorimetric Assay for Botulinum Serotype A Light Chain (BoLcA)
371(2)
11.2.2 Staphylococcal Enterotoxin B (SEB)
373(1)
11.3 Nanosensors for Cancer Cell/Biomarker Detection
374(7)
11.3.1 Breast Cancer Cell MCF-7
375(1)
11.3.2 HER2, A Medical Sign of Breast Cancer
376(1)
11.3.3 Serum Amyloid A1 (SAA1) Antigen, a Lung-Cancer-Specific Biomarker
376(2)
11.3.4 Prostate-Specific Antigen (PSA), a Biomarker for Prostate Cancer
378(1)
11.3.5 Mirna-106a, the Biomarker of Gastric Cancer
378(2)
11.3.6 Colorectal Carcinoma Cell
380(1)
11.3.7 Cluster of Differentiation 10 (CD10) Antigen, the Common Acute Lymphoblastic Leukemia Antigen
380(1)
11.4 Nanosensors for Detection of Infectious Disease Indicators
381(12)
11.4.1 IgG Antibodies to Hepatitis B Surface Antigen (α-HbsAg IgG Antibodies)
381(2)
11.4.2 Dengue-IRNA
383(1)
11.4.3 Japanese Encaphilitis Virus (JEV) Antigen
383(2)
11.4.4 HIV-1 p24 Antigen
385(1)
11.4.5 Zika Virus (ZIKV)
386(2)
11.4.6 Severe Acute Respiratory Syndrome Coronavirus 2
388(1)
11.4.7 Pneumococcus or Streptococcus pneumoniae
388(1)
11.4.8 Acid-Fast Bacilli (AFB)
388(1)
11.4.9 Streptococcus pyogenes Single-Stranded Genomic-DNA (5. pyogenes ssg-DNA)
389(2)
11.4.10 Plasmodium falciparum Heat-Shock Protein 70 (PfHsp70)
391(2)
11.5 Nanosensors for Automotive, Aerospace, and Consumer Applications
393(11)
11.5.1 Strain/Pressure Sensors
393(1)
11.5.1.1 Polymer-Metallic Nanoparticles Composite Pressure Sensor
393(2)
11.5.1.2 Percolative Pd Nanoparticle (PdNP) Array-Based Pressure Sensor
395(1)
11.5.1.3 Silver Nanoparticle (AgNP)/Polydimethylsiloxane (PDMS) Strain/Pressure Sensor
396(1)
11.5.1.4 Polyacrylamide (PAAm)/Gold nanoparticle (AuNP) Pressure Sensor
397(2)
11.5.2 Acoustic Vibration Sensor
399(1)
11.5.3 Acceleration Sensor
399(1)
11.5.4 Orientation, Angular Rate, or Angle Sensors
399(1)
11.5.4.1 CNT Field-Emission Nano Gyroscope
399(2)
11.5.4.2 Magnetic Nanoparticles-Based Gyroscopic Sensor
401(1)
11.5.5 Ultrasound Sensor
401(1)
11.5.6 Magnetic Field Sensor
402(1)
11.5.6.1 Nanoparticle Core-Based Fluxgate Magnetometer
403(1)
11.5.6.2 Magnetic Nanoparticle (MNP)-Functionalized Magnetometer
403(1)
11.6 Discussion and Conclusions
404(7)
11.6.1 Pathogens
404(1)
11.6.2 Toxins
404(1)
11.6.3 Cancer
404(2)
11.6.4 Infectious Diseases
406(1)
11.6.5 Automotive, Aerospace, and Consumer Applications
406(1)
Review Exercises
406(3)
References
409(2)
12 Nanosensors for Homeland Security
411(56)
12.1 Necessity of Nanosensors for Trace Explosive Detection
411(1)
12.2 2,4,6-Trinitrotoluene (TNT) Nanosensors
411(7)
12.2.1 Curcumin Nanomaterials Surface Energy Transfer (NSET) Probe
411(1)
12.2.2 Amine-Functionalized Silica Nanoparticles (SiOj-NHj) Colorimetric Sensor
411(1)
12.2.3 Amine-Modined Gold@Silver Nanoparticles-Based Colorimetric Paper Sensor
411(1)
12.2.4 Polyethylenimine (PEI)-Capped Downconverting P-NaYF4:Gd3+,Tb3t@PEI Nanophosphor Luminescence Sensor
412(1)
12.2.5 Janus Amine-Modified Upconverting NaYF4:Yb3+/Er3+ Nanoparticle (UCNP) Micromotor-Based On-Off Luminescence Sensor
413(2)
12.2.6 AgInS2 (AIS) Quantum Dot (QD) Fluorometric Probe
415(1)
12.2.7 TNT Recognition Peptide Single-Walled Carbon Nanotubes (SWCNTs) Hybrid Anchored Surface Plasmon Resonance (SPR) Chip
415(1)
12.2.8 Non-Imprinted and Molecularly Imprinted Bis-Aniline-Cross-Linked Gold Nanoparticles (AuNPs) Composite/Gold Layer for Surface Plasmon Resonance, and Related Sensors
415(3)
12.3 TNT/Tetryl (Tetranitro-N-methylamine) Nanosensors
418(1)
12.3.1 Diaminocyclohexane (DACH)-Functionalized/Thioglycolic Acid (TGA)-Modified Gold Nanoparticle Colorimetric Sensor for TNT/Tetryl
418(1)
12.3.2 Cetyl Trimethyl Ammonium Bromide (CTAB) Surfactant Stabilized/Diethyldithiocarbamate-Functi onalized Gold Nanoparticle Colorimetric Sensor for TNT/Tetryl
418(1)
12.4 Picric Acid Nanosensors
418(4)
12.4.1 Zinc Oxide (ZnO) Nanopeanuts-Modified Screen-Printed Electrode (SPE)
418(1)
12.4.2 Nanostructured Cuprous Oxide (Cu2O)-Coated Screen-Printed Electrode
418(1)
12.4.3 β-Cyclodextrin-Functionalized Reduced Graphene Oxide (rGO) Sensor
418(3)
12.4.4 Conjugated Polymer Nanoparticles (CPNPs) Fluorescence/Current Response Sensor
421(1)
12.4.5 Surface-Enhanced Raman Scattering (SERS) Using Hydrophobic Silver Nanopillar Substrates
421(1)
12.5 Nanosensors for 1,3,5-Trinitro-1,3,5-Triazacyclohexane (RDX) and Other Explosives
422(3)
12.5.1 Gold Nanoparticles Substrate for RDX (Cyclotrimethylenetrinitramine) Detection by SERS
422(1)
12.5.2 4-Aminothiophenol (4-ATP)-Functionalized Gold Nanoparticle Colorimetric Sensor for RDX (Cyclotrimethylenetrinitramine)/HMX(Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine)
423(1)
12.5.3 Cadmium Sulfide-Diphenylamine (CdS QD-DPA) FRET-Based Fluorescence Sensor for RDX (Cyclotrimethylenetrinitramine)/PETN (Pentaerythritol Tetranitrate)
423(1)
12.5.4 Gold Nanoparticles/Nitroenergetic Memory-Poly(Carbazole-Aniline) P(Cz-co-ANI) Film-Modified Glassy Carbon Electrode (GCE) for RDX (Cyclotrimethylenetrinitramine), TNT (2,4,6-Trinitrotoluene), DNT (2,4-Dinitrotoluene), and HMX (Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine) Detection
424(1)
12.6 Nanosensor Requirements for Detection of Biothreat Agents
425(1)
12.7 Anthrax Spore Nanosensors
425(2)
12.7.1 Europium Nanoparticle (Eu+ NP) Fluorescence Immunoassay (ENIA) for Bacillus anthracis Protective Antigen
425(2)
12.7.2 Gold Nanoparticle-Amplified DNA Probe-Functionalized Quartz Crystal Microbalance (QCM) Biosensor for B. Anthracis at Gene Level
427(1)
12.8 Rapid Screening Lateral Flow Plague Bacterium (Yersinia pestis) Nanosensor
427(3)
12.9 Francisella tularensis Bacterium Nanosensors
430(2)
12.9.1 Gold Nanoparticle Signal Enhancement-Based Quartz Crystal Microbalance Biosensor and Gold Nanoparticle Absorbance Biosensor
430(1)
12.9.2 Detection Antibody and Quantum Dots Decorated Apoferritin Nanoprobe
430(2)
12.10 Brucellosis Bacterium (Brucella) Nanosensors
432(2)
12.10.1 Gold Nanoparticle-Modified Disposable Screen-Printed Carbon Electrode (SPCE) Immunosensor for Brucella melitensis
432(1)
12.10.2 Oligonucleotide-Activated Gold Nanoparticle (Oligo-AuNP) Colorimetric Probe for Brucella Abortus
432(1)
12.10.3 Colored Silica Nanoparticles Colorimetric Immunoassay for Brucella abortus
433(1)
12.11 Oligonucleotide/Gold Nanoparticles/Magnetic Beads-Based Smallpox Virus (Variola) Colorimetric Sensor
434(2)
12.12 Ebola Virus (EBOV) Nanosensors
436(4)
12.12.1 Reduced Graphene Oxide-Based Field Effect Transistor (FET)
436(1)
12.12.2 Bio-Memristor for Ebola VP40 Matrix Protein Detection
437(2)
12.12.3 3-D Plasmonic Nanoantenna Sensor
439(1)
12.13 Ricin Toxin Nanosensors
440(5)
12.13.1 Silver Enhancement Immunoassay with Interdigitated Array Microelectrodes (IDAMs)
440(3)
12.13.2 Modified Bio-Barcode Assay (BCA)
443(1)
12.13.3 Electroluminescence Immunosensor
443(2)
12.14 Staphylococcal Enterotoxin B (SEB) Toxin Nanosensors
445(5)
12.14.1 SEB Detection Through Hydrogen Evolution Inhibition by Enzymatic Deposition of Metallic Copper on Platinum Nanoparticles (PtNPs)-Modified Glassy Carbon Electrode
445(1)
12.14.2 4-Nitrothiophenol (4-NTP)-Encoded Gold Nanoparticle Core/Silver Shell (AuNP@Ag)-Based SERS Immunosensor
446(1)
12.14.3 Aptamer Recognition Element and Gold Nanoparticle Color Indicator-Based Assay
447(3)
12.15 Anatoxin Nanosensors
450(3)
12.15.1 Polyaniline (PANI) Nanofibers-Gold Nanoparticles Composite-Based Indium Tin Oxide (ITO) Disk Electrode for A FBI
450(1)
12.15.2 Gold Nanodots (AuNDs)/Reduced Graphene Oxide Nanosheets/Indium Tin Oxide Substrate for Raman Spectroscopy and Electrochemical Measurements for AFB1
451(1)
12.15.3 AFM1 Aptamer-Triggered and DNA-Fueled Signal-On Fluorescence Sensor for AFM1
451(2)
12.16 Discussion and Conclusions
453(14)
12.16.1 Nanosensors for Explosives
453(1)
12.16.1.1 TNT
453(1)
12.16.1.2 TNTTetryl
454(1)
12.16.1.3 Picric Acid
454(1)
12.16.1.4 RDX/Other Explosives
455(1)
12.16.2 Nanosensors for Biothreat Agents
455(1)
Review Exercises
456(6)
References
462(5)
Part VI Powering, Networking, and Trends of Nanosensors
13 Nanogenerators and Self-Powered Nanosensors
467(26)
13.1 Devising Ways to Get Rid of Environment-Devastating Batteries
467(1)
13.1.1 Vibration: The Abundant Energy Source in the Environment
467(1)
13.1.2 Phenomena for Harvesting Vibrational Energy: Tribo- and Piezoelectricity
467(1)
13.1.3 Role of Nanotechnology in Energy Harvesting
468(1)
13.1.4 Other Energy Sources: Do Not Overlook Light and Heat!
468(1)
13.2 Output Current of Tribo/Piezoelectric Nanogenerators as the Outcome of Second Term in Maxwell's Displacement Current
468(2)
13.2.1 Principle of TENG
468(2)
13.2.2 Principle of PENG
470(1)
13.3 Triboelectricity-Powered Nanosensors
470(9)
13.3.1 TENG Made From Micropatterned Polydimethylsiloxane (PDMS) Membrane/Ag Nanoparticles and Ag Nanowires Composite Covered Aluminum Foil as a Static/Dynamic Pressure Nanosensor
470(2)
13.3.2 Electrolytic Solution/Fluorinated Ethylene Propylene (FEP) Film TENG Nanosensor for pH Measurement
472(2)
13.3.3 Ethanol Nanosensor Using Dual-Mode TENG: Water/TiO2 Nanomaterial TENG and SiO2 Nanoparticles (SiO2 NPs)/Polytetrafluoroethylene (PTFE) TENG
474(2)
13.3.4 Dopamine Nanosensor Using Al/PTFE with Nanoparticle Array TENG
476(1)
13.3.5 Mercury Ion Nanosensor Using Au Film with Au Nanoparticles/PDMS TENG
477(2)
13.4 Piezoelectricity-Powered Nanosensors
479(8)
13.4.1 ZnO Nanowire PENG as a Pressure/Speed Nanosensor
479(2)
13.4.2 UV and pH Nanosensors with ZnO Nanowire PENG
481(3)
13.4.3 CNT Hg2+ Ion Nanosensor with ZnO Nanowire PENG
484(1)
13.4.4 Smelling Electronic Skin (e-Skin) with ZnO Nanowire PENG
485(2)
13.5 Miscellaneous Powered Nanosensors
487(1)
13.5.1 Photovoltaic Effect-Powered H2S Nanosensor Using P-SWCNTs/N-Si Heterojunction
487(1)
13.5.2 Thermoelectricity-Powered Temperature Nanosensor Using Ag2Te Nanowires/Poly(3,4-ethylenedioxythi ophene):Poly(styrenesulfonate) (PEDOTPSS) Composite
487(1)
13.6 Discussion and Conclusions
488(5)
Review Exercises
489(2)
References
491(2)
14 Wireless Nanosensor Networks and IoNT
493(18)
14.1 Evolution of Wireless Nanosensor Concept
493(1)
14.2 Promising Communication Approaches for Nanonetworking
493(1)
14.3 Molecular Communication (MC)
493(2)
14.3.1 A Common Natural Phenomenon
493(1)
14.3.2 Steps in Molecular Communication
493(2)
14.3.3 Advantages of MC
495(1)
14.3.4 Difficulties of MC
495(1)
14.4 Electromagnetic Communication (EMC)
495(2)
14.5 Envisaged Electromagnetic Integrated Nanosensor Module
497(5)
14.5.1 Nanosensor Unit
497(1)
14.5.2 Nanoactuation Unit
497(1)
14.5.3 Power Unit
497(2)
14.5.4 Nanoprocessor Unit
499(1)
14.5.5 Nanomemory Unit
499(1)
14.5.6 Nanoantenna
500(1)
14.5.7 Nano Transceiver
500(1)
14.5.8 Alternative Nanotube Electromechanical Nano Transceiver
501(1)
14.6 WNNs Formation Using EMC Nanosensor Modules: The WNN Architecture
502(2)
14.7 Frequency Bands of Electromagnetic WNN Operation
504(1)
14.7.1 THz Channel Model for Intrabody WNNs
505(1)
14.7.2 Channel Capacity for WNNs
505(1)
14.7.3 Multi-Path Fading
505(1)
14.8 Modulation Techniques for Electromagnetic WNNs
505(1)
14.8.1 Time Spread On-Off Keying (TS-OOK) Modulation Scheme
505(1)
14.8.2 Symbol Rate Hopping (SRH)-TSOOK Modulation Scheme
506(1)
14.9 Channel Sharing Protocol in WNN
506(1)
14.10 Information Routing in WNNs
506(1)
14.10.1 Multi-Hop Routing
506(1)
14.10.2 Sensing-Aware Information Routing: The Cross-Layer Protocol
506(1)
14.11 Failure Mechanisms and Reliability Issues of WNNs
506(1)
14.12 Internet of Nano Things (IoNT): The Nanomachine
507(1)
14.13 Discussion and Conclusions
507(4)
Review Exercises
508(1)
References
508(3)
15 Overview and Future Trends of Nanosensors
511(16)
15.1 Introduction
511(1)
15.1.1 Interfacing Nanosensors with Human Beings
511(1)
15.1.2 Three Main Types of Nanosensors
511(1)
15.1.3 Using the Response Properties of the Same Nanomaterial in Different Types of Nanosensors
511(1)
15.1.4 Nanosensor Science, Engineering, and Technology: Three Interrelated Disciplines
511(1)
15.1.5 Scope of the
Chapter
512(1)
15.2 Scanning Tunneling Microscope
512(1)
15.3 Atomic Force Microscope
512(1)
15.4 Mechanical Nanosensors
512(2)
15.5 Thermal Nanosensors
514(1)
15.6 Optical Nanosensors
515(1)
15.7 Magnetic Nanosensors
516(1)
15.8 Chemical Nanosensors
517(1)
15.9 Nanobiosensors
518(1)
15.10 Nanosensor Fabrication Aspects
519(1)
15.11 In Vivo Nanosensor Problems
520(1)
15.12 Molecularly Imprinted Polymers for Biosensors
520(1)
15.13 Applications Perspectives of Nanosensors
521(1)
15.13.1 Nanosensors for Societal Benefits
521(1)
15.13.2 Nanosensors for Industrial Applications
521(1)
15.13.3 Nanosensors for Homeland Security
521(1)
15.14 Interfacing Issues for Nanosensors: Power Consumption and Sample Delivery Problems
521(1)
15.15 Depletion-Mediated Piezoelectric Actuation for NEMS
522(1)
15.16 Batteryless Nanosensors
522(1)
15.17 Networking Nanosensors Wirelessly
522(1)
15.18 Discussion and Conclusions
523(4)
Review Exercises
523(1)
References
524(3)
Index 527
Vinod Kumar Khanna, Ph.D is a retired Chief Scientist from the CSIR-Central Electronics Engineering Research Institute, Pilani (Rajasthan), India, and a former Professor at the Academy of Scientific and Innovative Research (AcSIR), India. He has worked for more than 37 years on the design, fabrication and characterization of semiconductor devices and micro/nanoelectronic sensors. He has published 16 books, 6 chapters in edited books, and 192 research papers in refereed journals and conference proceedings. He also has 5 patents to his name.