Preface to the Second Edition |
|
xxiii | |
Preface to the First Edition |
|
xxv | |
Acknowledgments |
|
xxvii | |
Author's Profile |
|
xxix | |
About the Book (2nd Edition) |
|
xxxi | |
Abbreviations and Acronyms |
|
xxxiii | |
Mathematical Notation |
|
xli | |
|
Part I Fundamental Concepts of Nanosensors |
|
|
|
1 Introduction to Nanosensors |
|
|
3 | (44) |
|
1.1 Getting Started with Nanosensors |
|
|
3 | (1) |
|
|
3 | (1) |
|
|
3 | (4) |
|
1.3.1 Definition of Physics |
|
|
3 | (1) |
|
1.3.2 Branches of Physics |
|
|
3 | (1) |
|
1.3.3 Matter: Its States, Materials, and Particles |
|
|
3 | (1) |
|
1.3.4 Molecules, Atoms, and Atomic Structure |
|
|
3 | (1) |
|
|
4 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
5 | (1) |
|
|
6 | (1) |
|
|
6 | (1) |
|
1.3.12 SI System of Units |
|
|
6 | (1) |
|
|
7 | (3) |
|
1.4.1 Definition of Chemistry |
|
|
7 | (1) |
|
1.4.2 Elements and Compounds |
|
|
7 | (1) |
|
1.4.3 Organic and Inorganic Compounds |
|
|
7 | (1) |
|
1.4.4 Subdivisions of Chemistry |
|
|
7 | (1) |
|
1.4.5 Natural and Artificial Elements |
|
|
7 | (1) |
|
1.4.6 Metals, Nonmetals, and Metalloids |
|
|
7 | (1) |
|
1.4.7 Periodic Table of Elements |
|
|
7 | (1) |
|
1.4.8 Chemical Change and Reaction |
|
|
7 | (1) |
|
1.4.9 Electronic Configuration (Structure) of Elements |
|
|
8 | (1) |
|
|
8 | (1) |
|
1.4.11 Oxidation and Reduction |
|
|
8 | (1) |
|
1.4.12 Acid, Base, and Salt |
|
|
8 | (1) |
|
1.4.13 Expressing Concentrations of Solutions and Gases |
|
|
8 | (1) |
|
1.4.14 Hydrocarbons: Saturated and Unsaturated |
|
|
8 | (1) |
|
1.4.15 Alkyl and Aryl Groups |
|
|
9 | (1) |
|
1.4.16 Alcohols and Phenols |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.4.18 Aldehydes and Ketones |
|
|
9 | (1) |
|
1.4.19 Amines and Amino Acids |
|
|
9 | (1) |
|
|
9 | (1) |
|
|
9 | (1) |
|
1.4.22 Proteins and Enzymes |
|
|
10 | (1) |
|
|
10 | (1) |
|
|
10 | (1) |
|
1.5.2 Branches of Biology |
|
|
10 | (1) |
|
1.5.3 Origin and Evolution of Life |
|
|
10 | (1) |
|
|
10 | (1) |
|
1.5.5 Differences between Bacteria and Viruses |
|
|
11 | (1) |
|
1.5.6 Heredity, Chromosomes, Genes, and Related Terms |
|
|
11 | (1) |
|
1.6 Semiconductor Electronics |
|
|
11 | (4) |
|
1.6.1 What Is Semiconductor Electronics? |
|
|
11 | (1) |
|
1.6.2 Energy Bands in Conductors, Semiconductors, and Insulators |
|
|
11 | (1) |
|
1.6.3 Interesting Properties of Semiconductors |
|
|
11 | (2) |
|
|
13 | (1) |
|
1.6.5 Bipolar Junction Transistor |
|
|
13 | (1) |
|
1.6.6 Metal-Oxide-Semiconductor Field-Effect Transistor |
|
|
13 | (1) |
|
1.6.7 Analog and Digital Circuits |
|
|
14 | (1) |
|
1.7 Nanometer and Appreciation of Its Magnitude |
|
|
15 | (1) |
|
1.8 Nanoscience and Nanotechnology |
|
|
15 | (1) |
|
1.9 Nanomaterials and the Unusual Behavior at Nanoscales |
|
|
16 | (1) |
|
1.10 Moving toward Sensors and Transducers: Meaning of Terms "Sensors" and "Transducers" |
|
|
17 | (1) |
|
1.11 Definition of Sensor Parameters and Characteristics |
|
|
18 | (1) |
|
1.12 Evolution of Semiconductor-Based Microsensors |
|
|
18 | (1) |
|
1.13 From the Macrosensor to the Microsensor Age and the Necessity for Nanoscale Measurements |
|
|
18 | (2) |
|
1.13.1 A Miniaturized Sensor Can Accomplish Many Tasks That a Bulky Device Cannot Perform |
|
|
18 | (1) |
|
1.13.2 The Issue of Power Consumption |
|
|
19 | (1) |
|
1.13.3 Low Response Times |
|
|
19 | (1) |
|
1.13.4 Multi-Analyte Detection and Multifunctionality |
|
|
19 | (1) |
|
1.13.5 Sensitivity Considerations and Need for Functionalization |
|
|
20 | (1) |
|
1.13.6 Interfacing with Biomolecules |
|
|
20 | (1) |
|
|
20 | (1) |
|
1.13.8 Possibility of a New Genre of Devices |
|
|
20 | (1) |
|
1.14 Definition and Classification of Nanosensors |
|
|
20 | (1) |
|
1.15 Physical, Chemical, and Biological Nanosensors |
|
|
21 | (1) |
|
1.16 Some Examples of Nanosensors |
|
|
22 | (1) |
|
1.16.1 Common Nanosensors |
|
|
22 | (1) |
|
1.16.2 Carbon Nanotube-Based Nanosensors |
|
|
22 | (1) |
|
1.16.3 Nanoscaled Thin-Film Sensors |
|
|
22 | (1) |
|
1.16.4 Microcantilever- and Nanocanti lever-Enabled Nanosensors |
|
|
22 | (1) |
|
1.17 Getting Familiar with Analytical and Characterization Tools: Microscopic Techniques to View Nanomaterials and Nanosensors |
|
|
22 | (3) |
|
1.17.1 Scanning Electron Microscope |
|
|
23 | (1) |
|
1.17.2 Transmission Electron Microscope |
|
|
23 | (1) |
|
1.17.3 Scanning Tunneling Microscope |
|
|
23 | (1) |
|
1.17.4 Atomic Force Microscope |
|
|
23 | (2) |
|
1.18 Spectroscopic Techniques for Analyzing Chemical Composition of Nanomaterials and Nanosensors |
|
|
25 | (3) |
|
1.18.1 Infrared Spectroscopy |
|
|
25 | (1) |
|
1.18.2 Ultraviolet-Visible Spectroscopy |
|
|
26 | (1) |
|
1.18.3 Raman Spectroscopy |
|
|
27 | (1) |
|
1.18.4 Energy-Dispersive X-Ray Spectroscopy (EDX) |
|
|
27 | (1) |
|
1.18.5 Auger Electron Spectroscopy |
|
|
27 | (1) |
|
|
27 | (1) |
|
1.18.7 X-Ray Photoelectron Spectroscopy or Electron Spectroscopy for Chemical Analysis |
|
|
27 | (1) |
|
1.18.8 Secondary Ion Mass Spectrometry |
|
|
28 | (1) |
|
1.19 The Displacement Nanosensor: STM |
|
|
28 | (6) |
|
1.19.1 Principle of Operation |
|
|
28 | (1) |
|
1.19.2 Transmission Coefficient |
|
|
29 | (3) |
|
|
32 | (1) |
|
1.19.4 Measurements with STM |
|
|
33 | (1) |
|
|
33 | (1) |
|
1.19.4.2 Density of States |
|
|
33 | (1) |
|
|
34 | (1) |
|
|
34 | (1) |
|
1.20 The Force Nanosensor: AFM |
|
|
34 | (7) |
|
1.20.1 Operating Principle |
|
|
34 | (1) |
|
1.20.2 Lennard-Jones Potential and the Van der Waals Forces |
|
|
34 | (2) |
|
1.20.3 Other Forces and Potentials |
|
|
36 | (1) |
|
1.20.4 Force Sensor (Cantilever) and Force Measurement |
|
|
37 | (1) |
|
1.20.5 Static and Dynamic Atomic Force Microscopy |
|
|
38 | (1) |
|
1.20.6 Classification of Modes of Operation of AFM on the Basis of Contact |
|
|
38 | (1) |
|
|
38 | (1) |
|
|
39 | (1) |
|
1.20.6.3 Tapping Mode (Intermittent-Contact Mode) |
|
|
39 | (1) |
|
1.20.7 Frequency-Modulation Atomic Force Microscopy |
|
|
39 | (1) |
|
1.20.8 Generic Calculation |
|
|
40 | (1) |
|
1.21 Outline and Organization of the Book |
|
|
41 | (1) |
|
1.22 Discussion and Conclusions |
|
|
42 | (5) |
|
|
42 | (1) |
|
|
43 | (4) |
|
Part II Nanomaterials and Micro/Nanofabrication Facilities |
|
|
|
2 Materials for Nanosensors |
|
|
47 | (30) |
|
|
47 | (1) |
|
2.2 Nanoparticles or Nanoscale Particles, the Importance of the Intermediate Regime between Atoms and Molecules, and Bulk Matter |
|
|
47 | (1) |
|
2.3 Classification of Nanoparticles on the Basis of Their Composition and Occurrence |
|
|
47 | (1) |
|
2.4 Core-/Shell-Structured Nanoparticles |
|
|
48 | (1) |
|
2.4.1 Inorganic Core/Shell Nanoparticles |
|
|
48 | (1) |
|
2.4.2 Organic--Inorganic Hybrid Core/Shell Nanoparticles |
|
|
49 | (1) |
|
2.5 Shape Dependence of Properties at the Nanoscale |
|
|
49 | (1) |
|
2.6 Dependence of Properties of Nanoparticles on Particle Size |
|
|
49 | (1) |
|
2.7 Surface Energy of a Solid |
|
|
49 | (1) |
|
2.8 Metallic Nanoparticles and Plasmons |
|
|
50 | (3) |
|
2.8.1 Surface Plasmon Resonance on Bulk Metals |
|
|
51 | (2) |
|
2.8.2 Surface Plasmon Band Phenomenon in Metal Nanoparticles |
|
|
53 | (1) |
|
2.9 Optical Properties of Bulk Metals and Metallic Nanoparticles |
|
|
53 | (3) |
|
2.9.1 Light Absorption by Bulk Metals and Metallic Nanoparticles |
|
|
53 | (3) |
|
2.9.2 Light Scattering by Nanoparticles |
|
|
56 | (1) |
|
2.10 Parameters Controlling the Position of Surface Plasmon Band of Nanoparticles |
|
|
56 | (1) |
|
2.10.1 Effect of the Surrounding Dielectric Medium |
|
|
56 | (1) |
|
2.10.2 Influence of Agglomeration-Preventing Ligands and Stabilizers |
|
|
57 | (1) |
|
2.10.3 Effect of Nanoparticle Size and Shape |
|
|
57 | (1) |
|
2.10.4 Compositional Effect |
|
|
57 | (1) |
|
|
57 | (5) |
|
2.11.1 Quantum Confinement in Metals |
|
|
58 | (1) |
|
2.11.2 Quantum Confinement in Semiconductors |
|
|
58 | (1) |
|
|
59 | (1) |
|
2.11.4 Bandgap Behavior Explanation by Particle-in-a-One-Dimensional Box Model of Electron Behavior |
|
|
59 | (3) |
|
|
62 | (6) |
|
|
62 | (1) |
|
2.12.2 Tight-Binding Approach to Optical Bandgap (Exciton Energy) Versus Quantum Dot Size |
|
|
63 | (2) |
|
2.12.3 Comparison of Quantum Dots With Organic Fluorophores |
|
|
65 | (2) |
|
2.12.4 Types of Quantum Dots Depending on Composition |
|
|
67 | (1) |
|
2.12.5 Classification of Quantum Dots Based on Structure |
|
|
67 | (1) |
|
2.12.6 Capping Molecules or Ligands on the Surfaces of Quantum Dots |
|
|
67 | (1) |
|
|
68 | (3) |
|
2.13.1 What Are Carbon Nanotubes? |
|
|
68 | (1) |
|
2.13.2 Structure of Graphene |
|
|
69 | (1) |
|
2.13.3 Structure of SWCNTs |
|
|
69 | (1) |
|
2.13.4 Mechanical Properties of CNTs |
|
|
70 | (1) |
|
2.13.5 Electrical, Electronic, and Magnetic Properties of CNTs |
|
|
71 | (1) |
|
|
71 | (1) |
|
2.15 Nanoporous Materials |
|
|
71 | (2) |
|
2.15.1 Nanoporous Silicon |
|
|
72 | (1) |
|
2.15.2 Nanoporous Alumina |
|
|
72 | (1) |
|
2.15.3 Nano-Grained Thin Films |
|
|
73 | (1) |
|
2.16 Discussion and Conclusions |
|
|
73 | (4) |
|
|
73 | (1) |
|
|
74 | (3) |
|
|
77 | (40) |
|
|
77 | (1) |
|
3.2 Nanotechnology Division |
|
|
77 | (7) |
|
3.2.1 Synthesis of Metal Nanoparticles |
|
|
77 | (1) |
|
3.2.1.1 Gold Nanoparticles |
|
|
77 | (1) |
|
3.2.1.2 Silver Nanoparticles |
|
|
77 | (1) |
|
3.2.1.3 Platinum Nanoparticles |
|
|
78 | (1) |
|
3.2.1.4 Palladium Nanoparticles |
|
|
78 | (1) |
|
3.2.2 Synthesis of Semiconductor Nanoparticles |
|
|
78 | (1) |
|
3.2.3 Synthesis of Semiconductor Nanocrystals: Quantum Dots |
|
|
79 | (1) |
|
3.2.3.1 CdSe/ZnS Core/Shell QDs |
|
|
79 | (1) |
|
3.2.3.2 CdSe/CdS Core/Shell QDs |
|
|
79 | (1) |
|
3.2.3.3 PbS and PbS/CdS Core/Shell QDs |
|
|
79 | (1) |
|
3.2.4 Synthesis of Metal Oxide Nanoparticles |
|
|
80 | (1) |
|
3.2.5 Synthesis of Carbon Nanotubes |
|
|
81 | (1) |
|
3.2.5.1 Arc Discharge Method of CNT Production |
|
|
81 | (1) |
|
3.2.5.2 Laser Ablation Method of CNT Production |
|
|
82 | (1) |
|
3.2.5.3 Chemical Vapor Deposition Method of CNT Production |
|
|
82 | (2) |
|
3.2.5.4 Difficulties Faced with Carbon Nanotubes |
|
|
84 | (1) |
|
3.3 Micro- and Nanoelectronics Division |
|
|
84 | (16) |
|
3.3.1 Semiconductor Clean Room |
|
|
84 | (1) |
|
3.3.2 Silicon Single-Crystal Growth and Wafer Production |
|
|
85 | (1) |
|
3.3.3 Molecular Beam Epitaxy |
|
|
85 | (1) |
|
|
85 | (1) |
|
|
86 | (1) |
|
3.3.6 Diffusion of Impurities in a Semiconductor |
|
|
87 | (2) |
|
|
89 | (1) |
|
|
90 | (1) |
|
|
91 | (1) |
|
3.3.8.2 Optical Lithography |
|
|
92 | (1) |
|
3.3.8.3 Electron-Beam Lithography |
|
|
92 | (1) |
|
3.3.8.4 X-Ray Lithography |
|
|
92 | (1) |
|
3.3.8.5 Dip-Pen Nanolithography |
|
|
92 | (1) |
|
3.3.8.6 Nanoimprint Lithography |
|
|
92 | (1) |
|
3.3.8.7 Nanosphere Lithography |
|
|
93 | (1) |
|
3.3.9 Chemical Vapor Deposition |
|
|
93 | (1) |
|
3.3.10 Wet Chemical Etching and Common Etchants |
|
|
94 | (1) |
|
3.3.11 Reactive Ion Etching |
|
|
95 | (1) |
|
3.3.12 Focused Ion Beam Etching and Deposition |
|
|
96 | (1) |
|
|
96 | (1) |
|
3.3.14 Dicing, Wire Bonding, and Encapsulation |
|
|
96 | (1) |
|
3.3.15 IC Downscaling: Special Technologies and Processes |
|
|
97 | (1) |
|
3.3.15.1 Downscaling Trends |
|
|
97 | (1) |
|
|
97 | (1) |
|
|
98 | (1) |
|
3.3.15.4 Smart Cut Process |
|
|
98 | (1) |
|
3.3.15.5 Strained Silicon Process |
|
|
98 | (1) |
|
3.3.15.6 Top-Down and Bottom-Up Approaches |
|
|
99 | (1) |
|
|
99 | (1) |
|
|
99 | (1) |
|
3.4 MEMS and NEMS Division |
|
|
100 | (5) |
|
3.4.1 Surface and Bulk Micromachining |
|
|
100 | (1) |
|
3.4.2 Machining by Wet and Dry Etching Techniques |
|
|
100 | (1) |
|
3.4.3 Deep Reactive-Ion Etching |
|
|
101 | (2) |
|
3.4.4 Front- and Back-Side Mask Alignment |
|
|
103 | (1) |
|
3.4.5 Multiple Wafer Bonding and Glass-Silicon Bonding |
|
|
103 | (1) |
|
|
103 | (1) |
|
3.4.7 Chemical Mechanical Polishing |
|
|
103 | (1) |
|
|
104 | (1) |
|
|
104 | (1) |
|
3.4.10 Micro-Injection Molding |
|
|
104 | (1) |
|
3.4.11 Hot Embossing and Electroforming |
|
|
105 | (1) |
|
3.4.12 Combination of MEMS/NEMS and CMOS Processes |
|
|
105 | (1) |
|
3.5 Biochemistry Division |
|
|
105 | (5) |
|
3.5.1 Surface Functionalization and Biofunctionalization of Nanomaterials |
|
|
105 | (1) |
|
3.5.2 Immobilization of Biological Elements |
|
|
106 | (2) |
|
3.5.3 Protocols for Attachment of Antibodies on Sensors |
|
|
108 | (1) |
|
3.5.4 Functionalization of CNTs for Biological Applications |
|
|
109 | (1) |
|
3.5.5 Water Solubility of Quantum Dots |
|
|
109 | (1) |
|
3.5.6 Low Cytotoxicity Coatings |
|
|
109 | (1) |
|
|
110 | (1) |
|
3.6.1 Nanoparticle Thin-Film Deposition |
|
|
110 | (1) |
|
3.6.2 Polymer Coatings in Nano Gas Sensors |
|
|
110 | (1) |
|
3.6.3 Metallic Nanoparticle Functionalization of Si Nanowires for Gas Sensing Applications |
|
|
110 | (1) |
|
3.7 Nanosensor Characterization Division |
|
|
110 | (1) |
|
3.8 Nanosensor Powering, Signal Processing, and Communication Division |
|
|
110 | (2) |
|
|
111 | (1) |
|
3.8.1.1 Lithium Nanobatteries |
|
|
111 | (1) |
|
3.8.1.2 Self-Powered Nanogenerators |
|
|
111 | (1) |
|
3.8.1.3 Energy Harvesting from the Environment |
|
|
111 | (1) |
|
3.8.1.4 Synthetic Chemical Batteries Based on Adenosine Triphosphate |
|
|
111 | (1) |
|
3.8.2 Signal Processing Unit |
|
|
111 | (1) |
|
3.8.3 Integrated Nanosensor Systems |
|
|
112 | (1) |
|
3.8.4 Wireless Nanosensor Networks |
|
|
112 | (1) |
|
3.9 Discussion and Conclusions |
|
|
112 | (5) |
|
|
112 | (1) |
|
|
113 | (4) |
|
Part III Physical Nanosensors |
|
|
|
|
117 | (34) |
|
|
117 | (1) |
|
4.2 Nanogram Mass Sensing by Quartz Crystal Microbalance |
|
|
117 | (3) |
|
4.3 Attogram (10-18g) and Zeptogram (10-21g) Mass Sensing by MEMS/NEMS Resonators |
|
|
120 | (13) |
|
4.3.1 Microcantilever Definitions and Theory |
|
|
120 | (5) |
|
4.3.1.1 Resonance Frequency Formula |
|
|
125 | (4) |
|
4.3.1.2 Deflection Formula |
|
|
129 | (1) |
|
4.3.2 Energy Dissipation and Q-Factor of Cantilever |
|
|
130 | (1) |
|
4.3.3 Noise of Cantilever and Its Mass Detection Limit |
|
|
131 | (1) |
|
4.3.4 Doubly Clamped and Free-Free Beam Resonators |
|
|
132 | (1) |
|
4.4 Electron Tunneling Displacement Nanosensor |
|
|
133 | (1) |
|
4.5 Coulomb Blockade Electrometer-Based Nanosensor |
|
|
134 | (1) |
|
4.5.1 Coulomb Blockade Effect |
|
|
134 | (1) |
|
4.5.2 Comparison with Tunneling Sensors |
|
|
135 | (1) |
|
4.6 Nanometer-Scale Displacement Sensing by Single-Electron Transistor |
|
|
135 | (1) |
|
4.7 Magnetomotive Displacement Nanosensor |
|
|
136 | (1) |
|
4.8 Piezoresistive and Piezoelectric Displacement Nanosensors |
|
|
137 | (1) |
|
4.9 Optical Displacement Nanosensor |
|
|
137 | (1) |
|
4.10 Femtonewton Force Sensors Using Doubly Clamped Suspended Carbon Nanotube Resonators |
|
|
138 | (2) |
|
4.11 Suspended CNT Electromechanical Sensors for Displacement and Force |
|
|
140 | (2) |
|
4.12 Membrane-Based CNT Electromechanical Pressure Sensor |
|
|
142 | (1) |
|
4.13 Tunnel Effect Accelerometer |
|
|
143 | (2) |
|
4.13.1 Principle of Motion Detection |
|
|
143 | (1) |
|
4.13.2 Construction and Working |
|
|
143 | (1) |
|
4.13.3 Micromachined Accelerometer |
|
|
144 | (1) |
|
|
145 | (1) |
|
4.15 Silicon Nanowire Accelerometer |
|
|
145 | (1) |
|
4.16 CNT Flow Sensor for Ionic Solutions |
|
|
146 | (1) |
|
4.17 Discussion and Conclusions |
|
|
147 | (4) |
|
|
147 | (2) |
|
|
149 | (2) |
|
|
151 | (22) |
|
|
151 | (1) |
|
5.2 Nanoscale Thermocouple Formed by Tungsten and Platinum Nanosized Strips |
|
|
151 | (1) |
|
5.3 Resistive Thermal Nanosensor Fabricated by Focused-Ion-Beam Chemical-Vapor-Deposition (FIB-CVD) |
|
|
152 | (1) |
|
5.4 Carbon "Nanowire-on-Diamond" Resistive Temperature Nanosensor |
|
|
152 | (1) |
|
5.5 Carbon Nanotube Grown on Nickel Film as a Resistive Low-temperature (10--300 K) Nanosensor |
|
|
152 | (1) |
|
5.6 Laterally Grown CNTs between Two Microelectrodes as a Resistive Temperature Nanosensor |
|
|
153 | (1) |
|
5.7 Silicon Nanowire Temperature Nanosensors: Resistors and Diode Structures |
|
|
154 | (1) |
|
5.8 Ratiometric Fluorescent Nanoparticles for Temperature Sensing |
|
|
155 | (2) |
|
5.9 Er3+/Yb3+ Co-Doped Gd2O3 Nanophosphor as a Temperature Nanosensor, Using Fluorescence Intensity Ratio Technique |
|
|
157 | (2) |
|
5.10 Optical Heating of Yb3+-Er3+ Co-Doped Fluoride Nanoparticles and Distant Temperature Sensing through Luminescence |
|
|
159 | (1) |
|
5.11 Porphyrin-Containing Copolymer as a Thermochromic Nanosensor |
|
|
159 | (1) |
|
5.12 Silicon-Micromachined Scanning Thermal Profiler (STP) |
|
|
160 | (1) |
|
5.13 Superconducting Hot Electron Nanobolometers |
|
|
161 | (1) |
|
5.14 Thermal Convective Accelerometer Using CNT Sensing Element |
|
|
162 | (1) |
|
5.15 Single-Walled Carbon Nanotube Sensor for Airflow Measurement |
|
|
163 | (1) |
|
5.16 Vacuum Pressure and Flow Velocity Sensors, Using Batch-Processed CNT Wall |
|
|
163 | (1) |
|
5.17 Nanogap Pirani Gauge |
|
|
164 | (1) |
|
5.18 Carbon Nanotube-Polymer Nanocomposite as a Conductivity Response Infrared Nanosensor |
|
|
165 | (1) |
|
|
166 | (2) |
|
5.20 Discussion and Conclusions |
|
|
168 | (5) |
|
|
170 | (1) |
|
|
170 | (3) |
|
|
173 | (34) |
|
|
173 | (1) |
|
6.2 Noble-Metal Nanoparticles With LSPR and UV-Visible Spectroscopy |
|
|
174 | (2) |
|
6.3 Nanosensors Based on Surface-Enhanced Raman Scattering |
|
|
176 | (2) |
|
6.4 Colloidal SPR Colorimetric Gold Nanoparticle Spectrophotometric Sensor |
|
|
178 | (3) |
|
6.5 Fiber-Optic Nanosensors |
|
|
181 | (5) |
|
6.5.1 Fabry-Perot Reflectometric Optochemical Nanosensor, Using Optical Fibers and SWCNTs |
|
|
181 | (3) |
|
6.5.2 In-Fiber Nanocavity Sensor |
|
|
184 | (1) |
|
6.5.3 Fiber-Optic Nanosensors for Probing Living Cells |
|
|
185 | (1) |
|
6.6 Nanograting-Based Optical Accelerometer |
|
|
186 | (1) |
|
6.7 Fluorescent pH-Sensitive Nanosensors |
|
|
186 | (2) |
|
6.7.1 Renewable Glass Nanopipette with Fluorescent Dye Molecules |
|
|
186 | (1) |
|
6.7.2 Ratiometric pH Nanosensor |
|
|
187 | (1) |
|
6.7.3 Ph-Sensitive Microcapsules With Nanoparticle Incorporation in the Walls |
|
|
188 | (1) |
|
6.8 Disadvantages of Optical Fiber and Fluorescent Nanosensors for Living Cell Studies |
|
|
188 | (1) |
|
6.9 PEBBLE Nanosensors to Measure the Intracellular Environment |
|
|
189 | (3) |
|
6.10 Quantum Dots as Fluorescent Labels |
|
|
192 | (3) |
|
6.11 Quantum Dot FRET-Based Probes |
|
|
195 | (5) |
|
6.11.1 QD-FRET Protein Sensor |
|
|
197 | (1) |
|
6.11.2 QD-FRET Protease Sensor |
|
|
197 | (1) |
|
6.11.3 QD-FRET Maltose Sensor |
|
|
197 | (1) |
|
6.11.4 Sensor for Determining the Dissociation Constant (KJ between Rev and RRE |
|
|
198 | (2) |
|
6.12 Electrochemiluminescent Nanosensors for Remote Detection |
|
|
200 | (1) |
|
6.13 Crossed Zinc Oxide Nanorods As Resistive UV-Nanosensors |
|
|
200 | (2) |
|
6.14 Discussion and Conclusions |
|
|
202 | (5) |
|
|
202 | (1) |
|
|
203 | (4) |
|
|
207 | (32) |
|
|
207 | (1) |
|
7.2 Magnetoresistance Sensors |
|
|
207 | (7) |
|
7.2.1 Ordinary Magnetoresistance: The Hall Effect |
|
|
208 | (1) |
|
7.2.2 Anisotropic Magnetoresistance |
|
|
208 | (1) |
|
7.2.3 Giant Magnetoresistance |
|
|
208 | (1) |
|
7.2.3.1 Scientific Explanation of GMR |
|
|
209 | (4) |
|
7.2.3.2 Simple Analogies of GMR |
|
|
213 | (1) |
|
7.2.3.3 Optimizing Parameters |
|
|
213 | (1) |
|
7.2.3.4 GMR Sensor Structures |
|
|
213 | (1) |
|
7.3 Tunneling Magnetoresistance |
|
|
214 | (1) |
|
7.4 Limitations, Advantages, and Applications of GMR and TMR Sensors |
|
|
215 | (1) |
|
|
215 | (1) |
|
|
215 | (1) |
|
|
215 | (1) |
|
7.5 Magnetic Nanoparticle Probes for Studying Molecular Interactions |
|
|
215 | (7) |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
220 | (1) |
|
7.5.4 Telomerase Activity Analysis |
|
|
221 | (1) |
|
7.6 Protease-Specific Nanosensors for MRI |
|
|
222 | (1) |
|
7.7 Magnetic Relaxation Switch Immunosensors |
|
|
223 | (1) |
|
7.8 Magneto Nanosensor Microarray Biochip |
|
|
223 | (8) |
|
7.8.1 Rationale and Motivation |
|
|
223 | (1) |
|
7.8.2 Sensor Choice, Design Considerations, Passivation, and Magnetic Nanotag Issues |
|
|
224 | (2) |
|
7.8.3 Understanding Magnetic Array Operation |
|
|
226 | (1) |
|
7.8.4 Influence of Reaction Conditions on the Sensor |
|
|
227 | (1) |
|
7.8.5 DNA and Tumor Marker Detection |
|
|
227 | (2) |
|
7.8.6 GMR-Based Detection System With Zeptomole (10-21 Mol) Sensitivity |
|
|
229 | (1) |
|
7.8.7 Bead ARray Counter (BARC) Biosensor |
|
|
230 | (1) |
|
7.9 Needle-Type SV-GMR Sensor for Biomedical Applications |
|
|
231 | (1) |
|
7.10 Superconductive Magnetic Nanosensor |
|
|
232 | (1) |
|
7.11 Electron Tunneling-Based Magnetic Field Sensor |
|
|
232 | (1) |
|
7.12 Nanowire Magnetic Compass and Position Sensor |
|
|
233 | (1) |
|
7.13 Discussion and Conclusions |
|
|
234 | (5) |
|
|
234 | (1) |
|
|
235 | (4) |
|
Part IV Chemical and Biological Nanosensors |
|
|
|
|
239 | (28) |
|
|
239 | (1) |
|
8.2 Gas Sensors Based on Nanomaterials |
|
|
239 | (1) |
|
8.3 Metallic Nanoparticle-Based Gas Sensors |
|
|
240 | (1) |
|
8.4 Metal Oxide Gas Sensors |
|
|
240 | (9) |
|
8.4.1 Sensing Mechanism of Metal Oxide Sensors |
|
|
242 | (2) |
|
8.4.2 Sensitivity Controlling Parameters and the Influence of Heat Treatment |
|
|
244 | (4) |
|
8.4.3 Effect of Additives on Sensor Response |
|
|
248 | (1) |
|
8.5 Carbon Nanotube Gas Sensors |
|
|
249 | (4) |
|
8.5.1 Gas-Sensing Properties of CNTs |
|
|
249 | (1) |
|
8.5.2 Responses of SWCNTs and MWCNTs |
|
|
250 | (1) |
|
8.5.3 Modification of CNTs |
|
|
250 | (1) |
|
8.5.4 CNT-Based FET-Type Sensor |
|
|
251 | (1) |
|
8.5.5 MWCNTs/SnO2 Ammonia Sensor |
|
|
251 | (1) |
|
8.5.6 CNT-Based Acoustic Gas Sensor |
|
|
252 | (1) |
|
8.6 Porous Silicon-Based Gas Sensor |
|
|
253 | (1) |
|
8.7 Thin Organic Polymer Film-Based Gas Sensors |
|
|
253 | (1) |
|
8.8 Electrospun Polymer Nanofibers as Humidity Sensors |
|
|
253 | (1) |
|
8.9 Toward Large Nanosensor Arrays and Nanoelectronic Nose |
|
|
254 | (1) |
|
8.10 CNT-, Nanowire- and Nanobelt-Based Chemical Nanosensors |
|
|
255 | (4) |
|
8.10.1 CNT-Based ISFET for Nano pH Sensor |
|
|
255 | (1) |
|
8.10.2 NW Nanosensor for pH Detection |
|
|
255 | (2) |
|
8.10.3 ZnS/Silica Nanocable FET pH Sensor |
|
|
257 | (1) |
|
8.10.4 Bridging Nanowire As Vapor Sensor |
|
|
258 | (1) |
|
8.10.5 Palladium Functionalized Si NW H2 Sensor |
|
|
258 | (1) |
|
8.10.6 Polymer-Functionalized Piezoelectric-FET Humidity Nanosensor |
|
|
258 | (1) |
|
8.11 Optochemical Nanosensors |
|
|
259 | (3) |
|
8.11.1 Low-Potential Quantum Dot ECL Sensor for Metal Ion |
|
|
259 | (1) |
|
8.11.2 BSA-Activated CdTe QD Nanosensor for Sb3t Ion |
|
|
260 | (1) |
|
8.11.3 Functionalized CdSe/ZnS QD Nanosensor for Hg(II) Ion |
|
|
261 | (1) |
|
8.11.4 Marine Diatom Gas Sensors |
|
|
262 | (1) |
|
8.12 Discussion and Conclusions |
|
|
262 | (5) |
|
|
262 | (2) |
|
|
264 | (3) |
|
|
267 | (42) |
|
|
267 | (1) |
|
9.2 Nanoparticle-Based Electrochemical Biosensors |
|
|
267 | (9) |
|
9.2.1 Nitric Oxide Electrochemical Sensor |
|
|
270 | (1) |
|
9.2.2 Determination of Dopamine, Uric Acid, and Ascorbic Acid |
|
|
271 | (1) |
|
|
271 | (1) |
|
|
272 | (1) |
|
9.2.5 Gold Nanoparticle DNA Biosensor |
|
|
273 | (2) |
|
9.2.6 Monitoring Allergen-Antibody Reactions |
|
|
275 | (1) |
|
9.2.7 Hepatitis B Immunosensor |
|
|
275 | (1) |
|
9.2.8 Carcinoembryonic Antigen Detection |
|
|
275 | (1) |
|
9.2.9 Escherichia coli Detection in Milk Samples |
|
|
276 | (1) |
|
9.3 CNT-Based Electrochemical Biosensors |
|
|
276 | (9) |
|
9.3.1 Oxidation of Dopamine |
|
|
278 | (3) |
|
9.3.2 Direct Electrochemistry or Electrocatalysis of Catalase |
|
|
281 | (1) |
|
9.3.3 CNT-Based Electrochemical DNA Biosensor |
|
|
281 | (1) |
|
|
281 | (2) |
|
9.3.5 Cholesterol Biosensor |
|
|
283 | (1) |
|
|
284 | (1) |
|
9.4 Functionalization of CNTs for Biosensor Fabrication |
|
|
285 | (1) |
|
9.5 QD (Quantum Dot)-Based Electrochemical Biosensors |
|
|
285 | (2) |
|
9.5.1 Uric Acid Biosensor |
|
|
285 | (1) |
|
9.5.2 Hydrogen Peroxide Biosensor |
|
|
285 | (1) |
|
9.5.3 CdS Nanoparticles Modified Electrode for Glucose Detection |
|
|
286 | (1) |
|
9.5.4 QD Light-Triggered Glucose Detection |
|
|
286 | (1) |
|
9.6 Nanotube and Nanowire-Based FET Nanobiosensors |
|
|
287 | (2) |
|
9.6.1 Nanotube versus Nanowire |
|
|
287 | (1) |
|
9.6.2 Functionalization of SiNWs |
|
|
287 | (2) |
|
9.6.3 DNA and Protein Detection |
|
|
289 | (1) |
|
9.7 Cantilever-Based Nanobiosensors |
|
|
289 | (6) |
|
9.7.1 Biofunctionalization of the Microcantilever Surface |
|
|
291 | (2) |
|
9.7.2 Biosensing Applications |
|
|
293 | (2) |
|
9.8 Optical Nanobiosensors |
|
|
295 | (5) |
|
|
295 | (2) |
|
9.8.2 Aptamer-Modified Au Nanoparticles as a Colorimetric Adenosine Nanosensor |
|
|
297 | (1) |
|
9.8.3 Aptamer-Based Multicolor Fluorescent Gold Nanoprobe for Simultaneous Adenosine, Potassium Ion, and Cocaine Detection |
|
|
297 | (1) |
|
9.8.4 Aptamer-Capped QD as a Thrombin Nanosensor |
|
|
298 | (1) |
|
9.8.5 QD Aptameric Cocaine Nanosensor |
|
|
299 | (1) |
|
9.9 Biochips (or Microarrays) |
|
|
300 | (1) |
|
9.10 Discussion and Conclusions |
|
|
301 | (8) |
|
|
301 | (2) |
|
|
303 | (6) |
|
Part V Emerging Applications of Nanosensors |
|
|
|
10 Nanosensors for Societal Benefits |
|
|
309 | (56) |
|
|
309 | (1) |
|
10.2 Nanosensors for Particulate Matter Detection |
|
|
309 | (2) |
|
10.2.1 Cantilever-Based Airborne Nanoparticle Detector (CANTOR) |
|
|
309 | (1) |
|
10.2.2 Nanomechanical Resonant Filter-Fiber |
|
|
309 | (1) |
|
10.2.3 Aerosol Sensing by Voltage Modulation |
|
|
309 | (1) |
|
10.2.4 MEMS-Based Particle Detection System |
|
|
310 | (1) |
|
10.3 Nanosensors for Carbon Monoxide Detection |
|
|
311 | (2) |
|
10.3.1 Au Nanoparticle-Based Miniature CO Detector |
|
|
312 | (1) |
|
10.3.2 CuO Nanowire Sensor on Micro-Hotplate |
|
|
312 | (1) |
|
10.3.3 ZnO Nanowall-Based Conductometric Sensor |
|
|
312 | (1) |
|
10.3.4 ZnO NPs-Loaded 3D Reduced Graphene Oxide (ZnO/3D-rGO) Sensor |
|
|
312 | (1) |
|
10.3.5 Europium-Doped Cerium Oxide Nanoparticles Thick-Film Sensor |
|
|
312 | (1) |
|
10.3.6 Pt-decorated SnO2 Nanoparticles Sensor |
|
|
313 | (1) |
|
10.4 Nanosensors for Sulfur Dioxide Detection |
|
|
313 | (1) |
|
10.4.1 Tungsten Oxide Nanostructures-Based Sensor |
|
|
313 | (1) |
|
10.4.2 SnO2 Thin-Film Sensor with Nanoclusters of Metal Oxide Modifiers/Catalysts |
|
|
313 | (1) |
|
10.4.3 Fluorescence Nanoprobe |
|
|
313 | (1) |
|
10.4.4 Niobium-Loaded Tungsten Oxide Film Sensor |
|
|
313 | (1) |
|
10.4.5 Nickel Nanowall-Based Sensor |
|
|
313 | (1) |
|
10.5 Nanosensors for Nitrogen Dioxide Detection |
|
|
313 | (1) |
|
10.5.1 SnO2 Nanoribbon Sensor |
|
|
313 | (1) |
|
10.5.2 Tris(hydroxymethyl) Aminomethane (THMA)-Capped ZnO Nanoparticle-Coated ZnO Nanowire Sensor |
|
|
313 | (1) |
|
10.5.3 In2O3-Sensitized CuO-ZnO Nanoparticle Composite Film Sensor |
|
|
313 | (1) |
|
10.5.4 UV-Activated, Pt-Decorated Single-Crystal ZnO Nanowire Sensor |
|
|
313 | (1) |
|
10.6 Nanosensors for Ozone Detection |
|
|
314 | (1) |
|
10.6.1 SnO2/SWCNT Hybrid Thin-Film Sensor |
|
|
314 | (1) |
|
10.6.2 Nanocrystalline SiT1-xFexO3 (STF) Thin-Film Sensor |
|
|
314 | (1) |
|
10.6.3 ZnO Nanoparticle Sensor |
|
|
314 | (1) |
|
10.6.4 Pd-Decorated MWCNT Sensor |
|
|
314 | (1) |
|
10.6.5 UV-Illuminated ZnO Nanocrystal Sensor |
|
|
314 | (1) |
|
10.7 Nanosensors for VOC Detection |
|
|
314 | (2) |
|
10.7.1 Chemiresistive Sensor Using Gold Nanoparticles |
|
|
314 | (1) |
|
10.7.2 Metal-Organic Framework (MOF) Nanoparticle-Based Capacitive Sensor |
|
|
315 | (1) |
|
10.7.3 Al-Doped ZnO Nanowire {(ZnO:AI)NW}Sensor |
|
|
315 | (1) |
|
10.7.4 Nickel-Doped Tin Oxide Nanoparticle (Ni-SnO2 NP) Sensor for Formaldehyde |
|
|
315 | (1) |
|
10.7.5 Palladium Nanoparticle (PdNP)/Nickel Oxide (NiO) Thin - Film/Palladium (Pd) Thin-Film Sensor for Formaldehyde |
|
|
315 | (1) |
|
10.7.6 Surface Acoustic Wave (SAW) Sensor With Polymer-Sensitive Film Containing Embedded Nanoparticles |
|
|
315 | (1) |
|
10.7.7 Resorcinol-Functionalized Gold Nanoparticle Colorimetric Probe for Formaldehyde Detection |
|
|
316 | (1) |
|
10.8 Nanosensors for Ammonia Detection |
|
|
316 | (1) |
|
10.8.1 Polyaniline Nanoparticle Conductimetric Sensor |
|
|
316 | (1) |
|
10.8.2 MoO3 Nanoparticle Gel-Coated Sensor |
|
|
316 | (1) |
|
10.8.3 ZnO:Eu2+ Fluorescence Quenching Nanoparticle-Based Optical Sensor |
|
|
316 | (1) |
|
10.8.4 Pt Nanoparticle (Pt NP)-Decorated WO, Sensor |
|
|
316 | (1) |
|
|
317 | (1) |
|
10.10 Nanosensors for Detection of Escherichia coli 0157:H7 |
|
|
317 | (5) |
|
10.10.1 Magnetoelastic Sensor Amplified With Chitosan-Modified Fe3O4 Magnetic Nanoparticles (CMNPs) |
|
|
317 | (2) |
|
10.10.2 Mercaptoethylamine (MEA)-Modified Gold Nanoparticle Sensor |
|
|
319 | (1) |
|
10.10.3 Cysteine-Capped Gold Nanoparticle Sensor |
|
|
319 | (1) |
|
10.10.4 Three Nanoparticles-Based Biosensor (Iron Oxide, Gold, and Lead Sulfide) |
|
|
319 | (1) |
|
10.10.5 Magneto-Fluorescent Nanosensor (MfnS) |
|
|
319 | (2) |
|
10.10.6 Signal-Off Impedimetric Nanosensor With a Sensitivity Enhancement by Captured Nanoparticles |
|
|
321 | (1) |
|
10.10.7 An Impedimetric Biosensor for E. coli 0157:H7 Based on the Use of Self-Assembled Gold Nanoparticles (AuNPs) and Protein G-Thiol (PrG-Thiol) Scaffold |
|
|
321 | (1) |
|
10.10.8 Gold Nanoparticles Surface Plasmon Resonance (AuNP SPR) Chip |
|
|
321 | (1) |
|
10.10.9 Microfluidic Nanosensor Working on Aggregation of Gold Nanoparticles and Imaging by Smartphone |
|
|
321 | (1) |
|
10.11 Nanosensors for Detection of Vibrio cholerae and Cholera Toxin |
|
|
322 | (2) |
|
10.11.1 Lactose-Stabilized Gold Nanoparticles |
|
|
322 | (1) |
|
10.11.2 Ssdna/Nanostructured MgO (nMgO)/Indium Tin Oxide (ITO) Bioelectrode |
|
|
323 | (1) |
|
10.11.3 Nanostructured MgO (nMgO) Photoluminescence Sensor |
|
|
323 | (1) |
|
10.11.4 Lyophilized Gold Nanoparticle/Polystyrene-Co-Acrylic Acid-Based Genosensor |
|
|
323 | (1) |
|
10.11.5 Polystyrene-co-Acrylic Acid (PSA) Latex Nanospheres |
|
|
324 | (1) |
|
10.11.6 Graphene Nanosheet Bioelectrode with Lipid Film Containing Ganglioside GM1 Receptor of Cholera Toxin |
|
|
324 | (1) |
|
10.12 Nanosensors for Detection of Pseudomonas aeruginosa |
|
|
324 | (2) |
|
10.12.1 Probe-Modified Magnetic Nanoparticles-Based Chemiluminescent Sensor |
|
|
324 | (1) |
|
10.12.2 Reduced Graphene Electrode Decorated with Gold Nanoparticles (AuNPs) |
|
|
325 | (1) |
|
10.12.3 Polyaniline(PANI)/Gold Nanoparticle (AuNP) Decorated Indium Tin Oxide (ITO) Electrode |
|
|
325 | (1) |
|
10.13 Nanosensors for Detection of Legionella pneumophila |
|
|
326 | (1) |
|
10.13.1 ZnO Nanorod (ZnO-NR) Matrix-Based Immunosensor |
|
|
326 | (1) |
|
10.13.2 Azimuthally-Controlled Gold Grating-Coupling Surface Plasmon Resonance (GC-SPR) Platform |
|
|
326 | (1) |
|
10.14 Nanosensors for Detection of Mercury Ions |
|
|
327 | (1) |
|
10.14.1 Thymine Derivative (N-T) Decorated Gold Nanoparticle Sensor |
|
|
327 | (1) |
|
10.14.2 Smartphone-Based Microwell Reader (MR S-phone) AuNP-Aptamer Colorimetric Sensor |
|
|
327 | (1) |
|
10.14.3 Starch-Stabilized Silver Nanoparticle-Based Colorimetric Sensor |
|
|
327 | (1) |
|
10.14.4 Chitosan-Stabilized Silver Nanoparticle (Chi-AgNP)-Based Colorimetric Sensor |
|
|
328 | (1) |
|
10.15 Nanosensors for Detection of Lead Ions |
|
|
328 | (3) |
|
10.15.1 Glutathione (GSH)-Stabilized Silver Nanoparticle (AgNP) Sensor |
|
|
328 | (2) |
|
10.15.2 Maleic acid (MA)-Functionalized Gold Nanoparticle (AuNP) Sensor |
|
|
330 | (1) |
|
10.15.3 Label-Free Gold Nanoparticles (AuNPs) in the Presence of Glutathione (GSH) |
|
|
330 | (1) |
|
10.15.4 Gold Nanoparticles (AuNPs) Conjugated with Thioctic Acid (TA) and Fluorescent Dansyl Hydrazine (DNS) Molecules |
|
|
331 | (1) |
|
10.15.5 Valine-Capped Gold Nanoparticle Sensor |
|
|
331 | (1) |
|
10.15.6 Polyvinyl Alcohol (PVA)-Stabilized Colloidal Silver Nanoparticles (Ag NPs) in the Presence of Dithizone |
|
|
331 | (1) |
|
10.15.7 Gold Nanoparticle (AuNP)-Graphene (GR)-Modified Glassy Carbon Electrode (GCE) |
|
|
331 | (1) |
|
10.16 Nanosensors for Detection of As(III) ions |
|
|
331 | (2) |
|
10.16.1 Portable Surface-Enhanced Raman Spectroscopy (SERS) System |
|
|
331 | (1) |
|
10.16.2 Surface Plasmon Resonance (SPR) Nanosensor |
|
|
331 | (1) |
|
10.16.3 FePt Bimetallic Nanoparticle (FePt-NP) Sensor |
|
|
332 | (1) |
|
10.16.4 Gold Nanoparticles (AuNPs)-Modified Glassy Carbon Electrode (GCE) for Co-Detection of As(III) and Se(IV) |
|
|
332 | (1) |
|
10.16.5 Silver Nanoparticle-Modified Gold Electrode |
|
|
332 | (1) |
|
10.16.6 Carbon Nanoparticle (CNP)/Gold Nanoparticle (AuNP)-Modified Glassy Carbon Electrode (GCE) Aptasensor |
|
|
333 | (1) |
|
10.16.7 Gold Nanostructured Electrode on a Gold Foil (Au/GNE) |
|
|
333 | (1) |
|
10.16.8 Bimetallic Nanoparticle (NP) and [ Bimetallic NP + Polyaniline (PANI)] Composite-Modified Screen-Printed Carbon Electrode (SPCE) |
|
|
333 | (1) |
|
10.16.9 Ranolazine (Rano)-Functionalized Copper Nanoparticles (CuNPs) |
|
|
333 | (1) |
|
10.17 Nanosensors for Detection of Cr(VI) Ions |
|
|
333 | (1) |
|
10.17.1 Colloidal Gold Nanoparticle (AuNP) Probe-Based Immunochromatographic Sensor |
|
|
333 | (1) |
|
10.17.2 Amyloid-Fibril-Based Sensor |
|
|
333 | (1) |
|
10.17.3 Gold Nanoparticle (AuNP)-Decorated Titanium Dioxide Nanotubes (TiO2NTs) on a Ti Substrate |
|
|
334 | (1) |
|
10.18 Nanosensors for Detection of Cd2+ ions |
|
|
334 | (4) |
|
10.18.1 Gold Nanoparticle Amalgam (AuNPA)-Modified Screen-Printed Electrode (SPE) |
|
|
334 | (1) |
|
10.18.2 Turn-On Surface-Enhanced Raman Scattering (SERS) Sensor |
|
|
334 | (1) |
|
10.18.3 Thioglycerol (TG)-Capped CdSe Quantum Dots (QDs) |
|
|
335 | (1) |
|
10.18.4 CdTe Quantum (CdTe QD) Dot-Based Hybrid Probe |
|
|
335 | (1) |
|
10.18.5 Aptamer-Functionalized Gold Nanoparticle (AuNP) Sensor |
|
|
336 | (2) |
|
10.19 Nanosensors for Detection of Cu2+ ions |
|
|
338 | (1) |
|
10.19.1 Azide and Terminal Alkyne-Functionalized Gold Nanoparticle (AuNP) Sensor |
|
|
338 | (1) |
|
10.19.2 Cadmium Sulfide Nanoparticle (CdS NP)-Gold Quantum Dot (Au QD) Sensor |
|
|
339 | (1) |
|
10.19.3 Multiple Antibiotic Resistance Regulator (MarR)-Functionalized Gold Nanoparticle (AuNP) Sensor |
|
|
339 | (1) |
|
10.19.4 Casein Peptide-Functionalized Silver Nanoparticle (AgNP) Sensor |
|
|
339 | (1) |
|
10.20 Nanosensors for Detection of Pesticides |
|
|
339 | (12) |
|
10.20.1 DDT (Dichlorodiphenyltrichloroethane) |
|
|
339 | (2) |
|
10.20.2 2,4-Dichlorophenoxyacetic Acid (2,4-D) |
|
|
341 | (1) |
|
|
341 | (1) |
|
10.20.3.1 Amperometric Immunosensor |
|
|
341 | (2) |
|
10.20.3.2 Molecularly Imprinted Polymer (MIP)-Reduced Graphene Oxide and Gold Nanoparticle (rGO@AuNP)-Modified Glassy Carbon Electrode (GCE) |
|
|
343 | (1) |
|
10.20.3.3 Gold Nanoparticle (AuNP)-Based Surface Enhanced Raman Spectroscopy (SERS) |
|
|
344 | (1) |
|
|
344 | (1) |
|
|
344 | (1) |
|
|
344 | (1) |
|
10.20.6.1 Gold Nanoparticle (AuNP)-Modified Gold (Au) Electrode |
|
|
344 | (1) |
|
10.20.6.2 Cysteamine (Cys)-Functionalized Gold Nanoparticles (AuNPs) |
|
|
345 | (1) |
|
10.20.6.3 Nitrogen-Doped Carbon Quantum Dot-Based Luminescent Probe |
|
|
346 | (1) |
|
|
346 | (1) |
|
|
347 | (1) |
|
10.20.9 Hexachlorobenzene (HCB), Perchlorobenzene |
|
|
347 | (2) |
|
10.20.10 Malathion (MLT): Diethyl 2-[ (dimethoxyphosphorothioyl)sulfanyl]butanedioate |
|
|
349 | (1) |
|
10.20.11 Dithiocarbamate (DTC) Pesticide Group |
|
|
349 | (2) |
|
10.21 Discussion and Conclusions |
|
|
351 | (14) |
|
10.21.1 Particulate Matter |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
351 | (1) |
|
|
352 | (1) |
|
|
352 | (9) |
|
|
361 | (4) |
|
11 Nanosensors for Industrial Applications |
|
|
365 | (46) |
|
11.1 Nanosensors for Detection of Food-Borne Pathogenic Bacteria |
|
|
365 | (5) |
|
11.1.1 Salmonella typhimurium |
|
|
365 | (1) |
|
11.1.1.1 DNA Aptamers and Magnetic Nanoparticle (MNP)-Based Colorimetric Sensor |
|
|
365 | (1) |
|
11.1.1.2 Strip Sensor Using Gold Nanoparticle (AuNP)-Labeled Genus-Specific Anti-Lipopolysaccharide (LPS) Monoclonal Antibody (mAb) |
|
|
365 | (1) |
|
11.1.2 Clostridium perfringens |
|
|
366 | (1) |
|
11.1.3 Listeria monocytogenes |
|
|
367 | (1) |
|
11.1.3.1 Immunomagnetic Nanoparticles (IMNPs) with Microfluidic Chip and Interdigitated Microelectrodes |
|
|
368 | (1) |
|
11.1.3.2 Gold Nanoparticle (AuNP)/DNA Colorimetric Probe Assay |
|
|
368 | (1) |
|
11.1.4 Campylobacter jejuni |
|
|
369 | (1) |
|
11.1.5 Yersinia enterocolitica |
|
|
369 | (1) |
|
11.2 Nanosensors for Detection of Food-Borne Toxins |
|
|
370 | (4) |
|
11.2.1 Botulinum Neurotoxin Serotype A (BoNT/A) |
|
|
370 | (1) |
|
11.2.1.1 Gold Nanodendrite (AuND)/Chitosan Nanoparticle (CSNP)-Modified Screen-Printed Carbon Electrode (SPCE) for Botulinum Neurotoxin Serotype A (BoNT/A) |
|
|
371 | (1) |
|
11.2.1.2 Peptide-Functionalized Gold Nanoparticles (AuNPs)-Based Colorimetric Assay for Botulinum Serotype A Light Chain (BoLcA) |
|
|
371 | (2) |
|
11.2.2 Staphylococcal Enterotoxin B (SEB) |
|
|
373 | (1) |
|
11.3 Nanosensors for Cancer Cell/Biomarker Detection |
|
|
374 | (7) |
|
11.3.1 Breast Cancer Cell MCF-7 |
|
|
375 | (1) |
|
11.3.2 HER2, A Medical Sign of Breast Cancer |
|
|
376 | (1) |
|
11.3.3 Serum Amyloid A1 (SAA1) Antigen, a Lung-Cancer-Specific Biomarker |
|
|
376 | (2) |
|
11.3.4 Prostate-Specific Antigen (PSA), a Biomarker for Prostate Cancer |
|
|
378 | (1) |
|
11.3.5 Mirna-106a, the Biomarker of Gastric Cancer |
|
|
378 | (2) |
|
11.3.6 Colorectal Carcinoma Cell |
|
|
380 | (1) |
|
11.3.7 Cluster of Differentiation 10 (CD10) Antigen, the Common Acute Lymphoblastic Leukemia Antigen |
|
|
380 | (1) |
|
11.4 Nanosensors for Detection of Infectious Disease Indicators |
|
|
381 | (12) |
|
11.4.1 IgG Antibodies to Hepatitis B Surface Antigen (α-HbsAg IgG Antibodies) |
|
|
381 | (2) |
|
|
383 | (1) |
|
11.4.3 Japanese Encaphilitis Virus (JEV) Antigen |
|
|
383 | (2) |
|
|
385 | (1) |
|
|
386 | (2) |
|
11.4.6 Severe Acute Respiratory Syndrome Coronavirus 2 |
|
|
388 | (1) |
|
11.4.7 Pneumococcus or Streptococcus pneumoniae |
|
|
388 | (1) |
|
11.4.8 Acid-Fast Bacilli (AFB) |
|
|
388 | (1) |
|
11.4.9 Streptococcus pyogenes Single-Stranded Genomic-DNA (5. pyogenes ssg-DNA) |
|
|
389 | (2) |
|
11.4.10 Plasmodium falciparum Heat-Shock Protein 70 (PfHsp70) |
|
|
391 | (2) |
|
11.5 Nanosensors for Automotive, Aerospace, and Consumer Applications |
|
|
393 | (11) |
|
11.5.1 Strain/Pressure Sensors |
|
|
393 | (1) |
|
11.5.1.1 Polymer-Metallic Nanoparticles Composite Pressure Sensor |
|
|
393 | (2) |
|
11.5.1.2 Percolative Pd Nanoparticle (PdNP) Array-Based Pressure Sensor |
|
|
395 | (1) |
|
11.5.1.3 Silver Nanoparticle (AgNP)/Polydimethylsiloxane (PDMS) Strain/Pressure Sensor |
|
|
396 | (1) |
|
11.5.1.4 Polyacrylamide (PAAm)/Gold nanoparticle (AuNP) Pressure Sensor |
|
|
397 | (2) |
|
11.5.2 Acoustic Vibration Sensor |
|
|
399 | (1) |
|
11.5.3 Acceleration Sensor |
|
|
399 | (1) |
|
11.5.4 Orientation, Angular Rate, or Angle Sensors |
|
|
399 | (1) |
|
11.5.4.1 CNT Field-Emission Nano Gyroscope |
|
|
399 | (2) |
|
11.5.4.2 Magnetic Nanoparticles-Based Gyroscopic Sensor |
|
|
401 | (1) |
|
|
401 | (1) |
|
11.5.6 Magnetic Field Sensor |
|
|
402 | (1) |
|
11.5.6.1 Nanoparticle Core-Based Fluxgate Magnetometer |
|
|
403 | (1) |
|
11.5.6.2 Magnetic Nanoparticle (MNP)-Functionalized Magnetometer |
|
|
403 | (1) |
|
11.6 Discussion and Conclusions |
|
|
404 | (7) |
|
|
404 | (1) |
|
|
404 | (1) |
|
|
404 | (2) |
|
11.6.4 Infectious Diseases |
|
|
406 | (1) |
|
11.6.5 Automotive, Aerospace, and Consumer Applications |
|
|
406 | (1) |
|
|
406 | (3) |
|
|
409 | (2) |
|
12 Nanosensors for Homeland Security |
|
|
411 | (56) |
|
12.1 Necessity of Nanosensors for Trace Explosive Detection |
|
|
411 | (1) |
|
12.2 2,4,6-Trinitrotoluene (TNT) Nanosensors |
|
|
411 | (7) |
|
12.2.1 Curcumin Nanomaterials Surface Energy Transfer (NSET) Probe |
|
|
411 | (1) |
|
12.2.2 Amine-Functionalized Silica Nanoparticles (SiOj-NHj) Colorimetric Sensor |
|
|
411 | (1) |
|
12.2.3 Amine-Modined Gold@Silver Nanoparticles-Based Colorimetric Paper Sensor |
|
|
411 | (1) |
|
12.2.4 Polyethylenimine (PEI)-Capped Downconverting P-NaYF4:Gd3+,Tb3t@PEI Nanophosphor Luminescence Sensor |
|
|
412 | (1) |
|
12.2.5 Janus Amine-Modified Upconverting NaYF4:Yb3+/Er3+ Nanoparticle (UCNP) Micromotor-Based On-Off Luminescence Sensor |
|
|
413 | (2) |
|
12.2.6 AgInS2 (AIS) Quantum Dot (QD) Fluorometric Probe |
|
|
415 | (1) |
|
12.2.7 TNT Recognition Peptide Single-Walled Carbon Nanotubes (SWCNTs) Hybrid Anchored Surface Plasmon Resonance (SPR) Chip |
|
|
415 | (1) |
|
12.2.8 Non-Imprinted and Molecularly Imprinted Bis-Aniline-Cross-Linked Gold Nanoparticles (AuNPs) Composite/Gold Layer for Surface Plasmon Resonance, and Related Sensors |
|
|
415 | (3) |
|
12.3 TNT/Tetryl (Tetranitro-N-methylamine) Nanosensors |
|
|
418 | (1) |
|
12.3.1 Diaminocyclohexane (DACH)-Functionalized/Thioglycolic Acid (TGA)-Modified Gold Nanoparticle Colorimetric Sensor for TNT/Tetryl |
|
|
418 | (1) |
|
12.3.2 Cetyl Trimethyl Ammonium Bromide (CTAB) Surfactant Stabilized/Diethyldithiocarbamate-Functi onalized Gold Nanoparticle Colorimetric Sensor for TNT/Tetryl |
|
|
418 | (1) |
|
12.4 Picric Acid Nanosensors |
|
|
418 | (4) |
|
12.4.1 Zinc Oxide (ZnO) Nanopeanuts-Modified Screen-Printed Electrode (SPE) |
|
|
418 | (1) |
|
12.4.2 Nanostructured Cuprous Oxide (Cu2O)-Coated Screen-Printed Electrode |
|
|
418 | (1) |
|
12.4.3 β-Cyclodextrin-Functionalized Reduced Graphene Oxide (rGO) Sensor |
|
|
418 | (3) |
|
12.4.4 Conjugated Polymer Nanoparticles (CPNPs) Fluorescence/Current Response Sensor |
|
|
421 | (1) |
|
12.4.5 Surface-Enhanced Raman Scattering (SERS) Using Hydrophobic Silver Nanopillar Substrates |
|
|
421 | (1) |
|
12.5 Nanosensors for 1,3,5-Trinitro-1,3,5-Triazacyclohexane (RDX) and Other Explosives |
|
|
422 | (3) |
|
12.5.1 Gold Nanoparticles Substrate for RDX (Cyclotrimethylenetrinitramine) Detection by SERS |
|
|
422 | (1) |
|
12.5.2 4-Aminothiophenol (4-ATP)-Functionalized Gold Nanoparticle Colorimetric Sensor for RDX (Cyclotrimethylenetrinitramine)/HMX(Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine) |
|
|
423 | (1) |
|
12.5.3 Cadmium Sulfide-Diphenylamine (CdS QD-DPA) FRET-Based Fluorescence Sensor for RDX (Cyclotrimethylenetrinitramine)/PETN (Pentaerythritol Tetranitrate) |
|
|
423 | (1) |
|
12.5.4 Gold Nanoparticles/Nitroenergetic Memory-Poly(Carbazole-Aniline) P(Cz-co-ANI) Film-Modified Glassy Carbon Electrode (GCE) for RDX (Cyclotrimethylenetrinitramine), TNT (2,4,6-Trinitrotoluene), DNT (2,4-Dinitrotoluene), and HMX (Octahydro-1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine) Detection |
|
|
424 | (1) |
|
12.6 Nanosensor Requirements for Detection of Biothreat Agents |
|
|
425 | (1) |
|
12.7 Anthrax Spore Nanosensors |
|
|
425 | (2) |
|
12.7.1 Europium Nanoparticle (Eu+ NP) Fluorescence Immunoassay (ENIA) for Bacillus anthracis Protective Antigen |
|
|
425 | (2) |
|
12.7.2 Gold Nanoparticle-Amplified DNA Probe-Functionalized Quartz Crystal Microbalance (QCM) Biosensor for B. Anthracis at Gene Level |
|
|
427 | (1) |
|
12.8 Rapid Screening Lateral Flow Plague Bacterium (Yersinia pestis) Nanosensor |
|
|
427 | (3) |
|
12.9 Francisella tularensis Bacterium Nanosensors |
|
|
430 | (2) |
|
12.9.1 Gold Nanoparticle Signal Enhancement-Based Quartz Crystal Microbalance Biosensor and Gold Nanoparticle Absorbance Biosensor |
|
|
430 | (1) |
|
12.9.2 Detection Antibody and Quantum Dots Decorated Apoferritin Nanoprobe |
|
|
430 | (2) |
|
12.10 Brucellosis Bacterium (Brucella) Nanosensors |
|
|
432 | (2) |
|
12.10.1 Gold Nanoparticle-Modified Disposable Screen-Printed Carbon Electrode (SPCE) Immunosensor for Brucella melitensis |
|
|
432 | (1) |
|
12.10.2 Oligonucleotide-Activated Gold Nanoparticle (Oligo-AuNP) Colorimetric Probe for Brucella Abortus |
|
|
432 | (1) |
|
12.10.3 Colored Silica Nanoparticles Colorimetric Immunoassay for Brucella abortus |
|
|
433 | (1) |
|
12.11 Oligonucleotide/Gold Nanoparticles/Magnetic Beads-Based Smallpox Virus (Variola) Colorimetric Sensor |
|
|
434 | (2) |
|
12.12 Ebola Virus (EBOV) Nanosensors |
|
|
436 | (4) |
|
12.12.1 Reduced Graphene Oxide-Based Field Effect Transistor (FET) |
|
|
436 | (1) |
|
12.12.2 Bio-Memristor for Ebola VP40 Matrix Protein Detection |
|
|
437 | (2) |
|
12.12.3 3-D Plasmonic Nanoantenna Sensor |
|
|
439 | (1) |
|
12.13 Ricin Toxin Nanosensors |
|
|
440 | (5) |
|
12.13.1 Silver Enhancement Immunoassay with Interdigitated Array Microelectrodes (IDAMs) |
|
|
440 | (3) |
|
12.13.2 Modified Bio-Barcode Assay (BCA) |
|
|
443 | (1) |
|
12.13.3 Electroluminescence Immunosensor |
|
|
443 | (2) |
|
12.14 Staphylococcal Enterotoxin B (SEB) Toxin Nanosensors |
|
|
445 | (5) |
|
12.14.1 SEB Detection Through Hydrogen Evolution Inhibition by Enzymatic Deposition of Metallic Copper on Platinum Nanoparticles (PtNPs)-Modified Glassy Carbon Electrode |
|
|
445 | (1) |
|
12.14.2 4-Nitrothiophenol (4-NTP)-Encoded Gold Nanoparticle Core/Silver Shell (AuNP@Ag)-Based SERS Immunosensor |
|
|
446 | (1) |
|
12.14.3 Aptamer Recognition Element and Gold Nanoparticle Color Indicator-Based Assay |
|
|
447 | (3) |
|
12.15 Anatoxin Nanosensors |
|
|
450 | (3) |
|
12.15.1 Polyaniline (PANI) Nanofibers-Gold Nanoparticles Composite-Based Indium Tin Oxide (ITO) Disk Electrode for A FBI |
|
|
450 | (1) |
|
12.15.2 Gold Nanodots (AuNDs)/Reduced Graphene Oxide Nanosheets/Indium Tin Oxide Substrate for Raman Spectroscopy and Electrochemical Measurements for AFB1 |
|
|
451 | (1) |
|
12.15.3 AFM1 Aptamer-Triggered and DNA-Fueled Signal-On Fluorescence Sensor for AFM1 |
|
|
451 | (2) |
|
12.16 Discussion and Conclusions |
|
|
453 | (14) |
|
12.16.1 Nanosensors for Explosives |
|
|
453 | (1) |
|
|
453 | (1) |
|
|
454 | (1) |
|
|
454 | (1) |
|
12.16.1.4 RDX/Other Explosives |
|
|
455 | (1) |
|
12.16.2 Nanosensors for Biothreat Agents |
|
|
455 | (1) |
|
|
456 | (6) |
|
|
462 | (5) |
|
Part VI Powering, Networking, and Trends of Nanosensors |
|
|
|
13 Nanogenerators and Self-Powered Nanosensors |
|
|
467 | (26) |
|
13.1 Devising Ways to Get Rid of Environment-Devastating Batteries |
|
|
467 | (1) |
|
13.1.1 Vibration: The Abundant Energy Source in the Environment |
|
|
467 | (1) |
|
13.1.2 Phenomena for Harvesting Vibrational Energy: Tribo- and Piezoelectricity |
|
|
467 | (1) |
|
13.1.3 Role of Nanotechnology in Energy Harvesting |
|
|
468 | (1) |
|
13.1.4 Other Energy Sources: Do Not Overlook Light and Heat! |
|
|
468 | (1) |
|
13.2 Output Current of Tribo/Piezoelectric Nanogenerators as the Outcome of Second Term in Maxwell's Displacement Current |
|
|
468 | (2) |
|
|
468 | (2) |
|
|
470 | (1) |
|
13.3 Triboelectricity-Powered Nanosensors |
|
|
470 | (9) |
|
13.3.1 TENG Made From Micropatterned Polydimethylsiloxane (PDMS) Membrane/Ag Nanoparticles and Ag Nanowires Composite Covered Aluminum Foil as a Static/Dynamic Pressure Nanosensor |
|
|
470 | (2) |
|
13.3.2 Electrolytic Solution/Fluorinated Ethylene Propylene (FEP) Film TENG Nanosensor for pH Measurement |
|
|
472 | (2) |
|
13.3.3 Ethanol Nanosensor Using Dual-Mode TENG: Water/TiO2 Nanomaterial TENG and SiO2 Nanoparticles (SiO2 NPs)/Polytetrafluoroethylene (PTFE) TENG |
|
|
474 | (2) |
|
13.3.4 Dopamine Nanosensor Using Al/PTFE with Nanoparticle Array TENG |
|
|
476 | (1) |
|
13.3.5 Mercury Ion Nanosensor Using Au Film with Au Nanoparticles/PDMS TENG |
|
|
477 | (2) |
|
13.4 Piezoelectricity-Powered Nanosensors |
|
|
479 | (8) |
|
13.4.1 ZnO Nanowire PENG as a Pressure/Speed Nanosensor |
|
|
479 | (2) |
|
13.4.2 UV and pH Nanosensors with ZnO Nanowire PENG |
|
|
481 | (3) |
|
13.4.3 CNT Hg2+ Ion Nanosensor with ZnO Nanowire PENG |
|
|
484 | (1) |
|
13.4.4 Smelling Electronic Skin (e-Skin) with ZnO Nanowire PENG |
|
|
485 | (2) |
|
13.5 Miscellaneous Powered Nanosensors |
|
|
487 | (1) |
|
13.5.1 Photovoltaic Effect-Powered H2S Nanosensor Using P-SWCNTs/N-Si Heterojunction |
|
|
487 | (1) |
|
13.5.2 Thermoelectricity-Powered Temperature Nanosensor Using Ag2Te Nanowires/Poly(3,4-ethylenedioxythi ophene):Poly(styrenesulfonate) (PEDOTPSS) Composite |
|
|
487 | (1) |
|
13.6 Discussion and Conclusions |
|
|
488 | (5) |
|
|
489 | (2) |
|
|
491 | (2) |
|
14 Wireless Nanosensor Networks and IoNT |
|
|
493 | (18) |
|
14.1 Evolution of Wireless Nanosensor Concept |
|
|
493 | (1) |
|
14.2 Promising Communication Approaches for Nanonetworking |
|
|
493 | (1) |
|
14.3 Molecular Communication (MC) |
|
|
493 | (2) |
|
14.3.1 A Common Natural Phenomenon |
|
|
493 | (1) |
|
14.3.2 Steps in Molecular Communication |
|
|
493 | (2) |
|
|
495 | (1) |
|
14.3.4 Difficulties of MC |
|
|
495 | (1) |
|
14.4 Electromagnetic Communication (EMC) |
|
|
495 | (2) |
|
14.5 Envisaged Electromagnetic Integrated Nanosensor Module |
|
|
497 | (5) |
|
|
497 | (1) |
|
14.5.2 Nanoactuation Unit |
|
|
497 | (1) |
|
|
497 | (2) |
|
14.5.4 Nanoprocessor Unit |
|
|
499 | (1) |
|
|
499 | (1) |
|
|
500 | (1) |
|
|
500 | (1) |
|
14.5.8 Alternative Nanotube Electromechanical Nano Transceiver |
|
|
501 | (1) |
|
14.6 WNNs Formation Using EMC Nanosensor Modules: The WNN Architecture |
|
|
502 | (2) |
|
14.7 Frequency Bands of Electromagnetic WNN Operation |
|
|
504 | (1) |
|
14.7.1 THz Channel Model for Intrabody WNNs |
|
|
505 | (1) |
|
14.7.2 Channel Capacity for WNNs |
|
|
505 | (1) |
|
|
505 | (1) |
|
14.8 Modulation Techniques for Electromagnetic WNNs |
|
|
505 | (1) |
|
14.8.1 Time Spread On-Off Keying (TS-OOK) Modulation Scheme |
|
|
505 | (1) |
|
14.8.2 Symbol Rate Hopping (SRH)-TSOOK Modulation Scheme |
|
|
506 | (1) |
|
14.9 Channel Sharing Protocol in WNN |
|
|
506 | (1) |
|
14.10 Information Routing in WNNs |
|
|
506 | (1) |
|
14.10.1 Multi-Hop Routing |
|
|
506 | (1) |
|
14.10.2 Sensing-Aware Information Routing: The Cross-Layer Protocol |
|
|
506 | (1) |
|
14.11 Failure Mechanisms and Reliability Issues of WNNs |
|
|
506 | (1) |
|
14.12 Internet of Nano Things (IoNT): The Nanomachine |
|
|
507 | (1) |
|
14.13 Discussion and Conclusions |
|
|
507 | (4) |
|
|
508 | (1) |
|
|
508 | (3) |
|
15 Overview and Future Trends of Nanosensors |
|
|
511 | (16) |
|
|
511 | (1) |
|
15.1.1 Interfacing Nanosensors with Human Beings |
|
|
511 | (1) |
|
15.1.2 Three Main Types of Nanosensors |
|
|
511 | (1) |
|
15.1.3 Using the Response Properties of the Same Nanomaterial in Different Types of Nanosensors |
|
|
511 | (1) |
|
15.1.4 Nanosensor Science, Engineering, and Technology: Three Interrelated Disciplines |
|
|
511 | (1) |
|
15.1.5 Scope of the Chapter |
|
|
512 | (1) |
|
15.2 Scanning Tunneling Microscope |
|
|
512 | (1) |
|
15.3 Atomic Force Microscope |
|
|
512 | (1) |
|
15.4 Mechanical Nanosensors |
|
|
512 | (2) |
|
|
514 | (1) |
|
|
515 | (1) |
|
15.7 Magnetic Nanosensors |
|
|
516 | (1) |
|
15.8 Chemical Nanosensors |
|
|
517 | (1) |
|
|
518 | (1) |
|
15.10 Nanosensor Fabrication Aspects |
|
|
519 | (1) |
|
15.11 In Vivo Nanosensor Problems |
|
|
520 | (1) |
|
15.12 Molecularly Imprinted Polymers for Biosensors |
|
|
520 | (1) |
|
15.13 Applications Perspectives of Nanosensors |
|
|
521 | (1) |
|
15.13.1 Nanosensors for Societal Benefits |
|
|
521 | (1) |
|
15.13.2 Nanosensors for Industrial Applications |
|
|
521 | (1) |
|
15.13.3 Nanosensors for Homeland Security |
|
|
521 | (1) |
|
15.14 Interfacing Issues for Nanosensors: Power Consumption and Sample Delivery Problems |
|
|
521 | (1) |
|
15.15 Depletion-Mediated Piezoelectric Actuation for NEMS |
|
|
522 | (1) |
|
15.16 Batteryless Nanosensors |
|
|
522 | (1) |
|
15.17 Networking Nanosensors Wirelessly |
|
|
522 | (1) |
|
15.18 Discussion and Conclusions |
|
|
523 | (4) |
|
|
523 | (1) |
|
|
524 | (3) |
Index |
|
527 | |