Muutke küpsiste eelistusi

E-raamat: Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8-12, 2021, Proceedings, Part II

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The four-volume proceedings LNCS 13108, 13109, 13110, and 13111 constitutes the proceedings of the 28th International Conference on Neural Information Processing, ICONIP 2021, which was held during December 8-12, 2021. The conference was planned to take place in Bali, Indonesia but changed to an online format due to the COVID-19 pandemic.





The total of 226 full papers presented in these proceedings was carefully reviewed and selected from 1093 submissions. The papers were organized in topical sections as follows:





Part I: Theory and algorithms;





Part II: Theory and algorithms; human centred computing; AI and cybersecurity;





Part III: Cognitive neurosciences; reliable, robust, and secure machine learning algorithms; theory and applications of natural computing paradigms; advances in deep and shallow machine learning algorithms for biomedical data and imaging; applications;  





Part IV: Applications.
Theory and Algorithms.- LSMVC: Low-rank Semi-supervised Multi-view
Clustering for Special Equipment Safety Warning.- Single-Skeleton and
Dual-Skeleton Hypergraph Convolution Neural Networks for Skeleton-Based
Action Recognition.- Multi-Reservoir Echo State Network with Multiple-Size
Input Time Slices for Nonlinear Time-Series Prediction.- Transformer with
Prior Language Knowledge for Image Captioning.- Continual Learning with
Laplace Operator based Node-Importance Dynamic Architecture Neural Network.-
Improving generalization of reinforcement learning for multi-agent combating
games.- Gradient Boosting Forest: A Two-Stage Ensemble Method Enabling
Federated Learning of GBDTs.- Random Neural Graph Generation with Structure
Evolution.- MatchMaker: Aspect-Based Sentiment Classification via Mutual
Information.- PathSAGE: Spatial Graph Attention Neural Networks With Random
Path Sampling.- Label Preserved Heterogeneous Network Embedding.-
Spatio-Temporal Dynamic Multi-Graph Attention Network for Ride-hailing Demand
Prediction.- An Implicit Learning Approach for Solving the Nurse Scheduling
Problem.- Improving Goal-Oriented Visual Dialogue by Asking Fewer Questions.-
Balance Between Performance and Robustness of Recurrent Neural Networks
brought by Brain-inspired Constraints on Initial Structure.- Single-Image
Smoker Detection by Human-Object Interaction with Post-Refinement.- A
Lightweight Multi-scale Feature Fusion Network For Real-time Semantic
Segmentation.- Multi-view Fractional Deep Canonical Correlation Analysis for
Subspace Clustering.- Handling the Deviation from Isometry between Domains
and Languages in Word Embeddings: Applications to Biomedical Text
Translation.- Inference in Neural Networks Using Conditional Mean-Field
Methods.- Associative Graphs for Fine-Grained Text Sentiment Analysis.-
k-Winners-Take-All Ensemble Neural Network.- Performance Improvement of FORCE
Learning for Chaotic Echo State Networks.- Generative Adversarial Domain
Generalization via Cross-Task Feature Attention Learning for Prostate
Segmentation.- Context-based Deep Learning Architecture with Optimal
Integration Layer for Image Parsing.- Kernelized Transfer Feature Learning on
Manifolds.- Data-Free Knowledge Distillation with Positive-Unlabeled
Learning.- Manifold Discriminative Transfer Learning for Unsupervised Domain
Adaptation.- Training-Free Multi-Objective Evolutionary Neural Architecture
Search via Neural Tangent Kernel and Number of Linear Regions.- Neural
Network Pruning via Genetic Wavelet Channel Search.- Binary Label-aware
Transfer Learning  for Cross-domain Slot Filling.- Condition-Invariant
Physical Adversarial Attacks via Pixel-wise Adversarial Learning.- Multiple
Partitions Alignment with Adaptive Similarity Learning.- Recommending best
course of treatment based on similarities of prognostic markers.- Generative
Adversarial Negative Imitation Learning from Noisy Demonstrations.- Detecting
Helmets on Motorcyclists by Deep Neural Networks with aDual-Detection
Scheme.- Short-Long Correlation Based Graph Neural Networks for Residential
Load Forecasting.- Disentangled Feature Network for Fine-Grained
Recognition.- Large-Scale Topological Radar Localization Using Learned
Descriptors.- Rethinking binary hyperparameters for deep transfer learning.-
Human Centred Computing.- Hierarchical Features Integration and Attention
Iteration Network for Juvenile Refractive Power Prediction.- Stress
Recognition in Thermal Videos using Bi-Directional Long-Term Recurrent
Convolutional Neural Networks.- StressNet: A Deep Neural Network based on
Dynamic Dropout Layers for Stress Recognition.- Analyzing Vietnamese Legal
Questions using Deep Neural Networks with Biaffine Classifiers.- BenAV: A
Bengali Audio-Visual Corpus for Visual Speech Recognition.- Investigation of
Different G2P Schemes for Speech Recognition in Sanskrit.- GRU with
Level-Aware Attention for Rumor Early Detection in Social Networks.-
Convolutional Feature-interacted FactorizationMachines for Sparse Contextual
Prediction.- A Lightweight Multidimensional Self-Attention Network for
Fine-grained Action Recognition.- Unsupervised Domain Adaptation with
Self-selected Active Learning for Cross-domain OCT Image Segmentation.-
Adaptive Graph Convolutional Network with Prior Knowledge for Action
Recognition.- Self-Adaptive Graph Neural Networks for Personalized Sequential
Recommendation.- Spitial-Temporal Attention Network with Multi-Similarity
Loss for Fine-Grained Skeleton-Based Action Recognition.- SRGAT: Social
Relational Graph Attention Network for Human Trajectory Prediction.- FSE: A
powerful feature augmentation technique for classification task.- AI and
Cybersecurity.- FHTC: Few-shot Hierarchical Text Classification in Financial
Domain.- JStrack: Enriching Malicious JavaScript Detection Based on AST Graph
Analysis and Attention Mechanism.