Muutke küpsiste eelistusi

E-raamat: Neutron Scattering

Volume editor (Rutherford Appleton Laboratory, Chilton, Didcot, UK), Volume editor (CEMHTI, Orléans, France)
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 191,10 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This work covers in some detail the application of neutron scattering to different fields of physics, materials science, chemistry, biology, the earth sciences and engineering. Its goal is to enable researchers in a particular area to identify aspects of their work in which neutron scattering techniques might contribute, conceive the important experiments to be done, assess what is required to carry them out, write a successful proposal for one of the major user facilities, and perform the experiments under the guidance of the appropriate instrument scientist.

The authors of the various chapters take account of the advances in experimental techniques over the past 25 years--for example, neutron reflectivity and spin-echo spectroscopy and techniques for probing the dynamics of complex materials and biological systems. Furthermore, with the third-generation spallation sources recently constructed in the United States and Japan and in the advanced planning stage in Europe, there is an increasing interest in time-of-flight techniques and short wavelengths. Correspondingly, the improved performance of cold moderators at both reactors and spallation sources has extended the long-wavelength capabilities.

  • Chapter authors are pre-eminent in their field
  • Seminal experiments are presented as examples
  • Provides guidance on how to plan, execute and analyse experiments

Arvustused

"...aims to cover the three-dimensional landscape of the neutron methods, the scientific topics and the potential users. It succeeds nicely in doing so...by providing a source of information for both experts as well as potential (new) users." --Neutron News,Oct 30 2014

Muu info

Provides a good balance between theory, experimental facilities and data analysis for all practitioners
Contributors xi
Volumes in Series xiii
Preface xvii
Symbols xxi
1 An Introduction to Neutron Scattering
1(136)
David L. Price
Felix Fernandez-Alonso
1.1 Fundamentals
2(20)
1.1.1 Why Are Neutrons so Unique?
2(3)
1.1.2 Thermal Neutrons for Condensed Matter Research
5(6)
1.1.3 Conservation Laws
11(1)
1.1.4 The Structure of Materials
11(5)
1.1.5 Adding Motion: Dynamics and Spectroscopy
16(6)
1.2 Scattering Foundations
22(9)
1.2.1 The Master Formula and Fermi's Golden Rule
22(3)
1.2.2 Nuclear Scattering
25(1)
1.2.3 The Double Differential Cross Section in the Time Domain
26(1)
1.2.4 Farewell to Nuclear Physics
27(1)
1.2.5 Coherent and Incoherent Scattering
28(2)
1.2.6 Scattering Functions
30(1)
1.3 Canonical Solids
31(11)
1.3.1 Normal Modes of Vibration
31(1)
1.3.2 Scattering Under the Harmonic Approximation
32(1)
1.3.3 Purely Elastic Events
33(2)
1.3.4 Inelastic (One-Phonon) Scattering
35(4)
1.3.5 Multiphonon Scattering
39(2)
1.3.6 Beyond Harmonic Vibrations
41(1)
1.4 Beyond Canonical Solids
42(40)
1.4.1 Space---Time (Van Hove) Correlation Functions
42(1)
1.4.2 Pair Distribution Functions
43(4)
1.4.3 Properties of the Dynamic Structure Factor
47(11)
1.4.4 From Order to Disorder: Diffuse Scattering
58(3)
1.4.5 Stochastic Diffusion
61(14)
1.4.6 Beyond Atoms and Molecules: Large-Scale Structures
75(7)
1.5 Magnetic Structure and Polarized Neutrons
82(24)
1.5.1 Basic Principles
82(6)
1.5.2 Polarized Neutrons
88(7)
1.5.3 Magnetic Bragg Scattering
95(2)
1.5.4 Diffuse Scattering from Magnetic Disorder
97(4)
1.5.5 Large-Scale Magnetic Structures
101(5)
1.6 Spin Dynamics
106(14)
1.6.1 Generalized Susceptibility
106(2)
1.6.2 Spin Waves
108(3)
1.6.3 Crystal Fields and Magnetic Clusters
111(3)
1.6.4 Spin Fluctuations
114(1)
1.6.5 Interband Transitions
115(2)
1.6.6 Critical Scattering
117(3)
1.7 Nuclear Spin: Order and Disorder
120(5)
1.7.1 A Closer Look at Nuclear Spins
121(1)
1.7.2 Scattering Cross Sections
121(2)
1.7.3 Uncorrelated and Correlated Spin Ensembles
123(2)
1.8 Outlook
125(12)
References
127(10)
2 Neutron Sources
137(108)
Francisco J. Bermejo
Fernando Sordo
2.1 Scope
138(2)
2.2 Useful Neutron Production Reactions
140(13)
2.2.1 Fission
141(1)
2.2.2 Direct and Stripping Reactions
142(2)
2.2.3 Bremsstrahlung
144(2)
2.2.4 Spallation Reactions
146(7)
2.3 Neutron Slowing Down and Moderators
153(13)
2.3.1 Moderators
158(8)
2.4 Basic Building Blocks of Accelerators to Drive Neutron Sources
166(31)
2.4.1 Beam Injectors
167(11)
2.4.2 Targets
178(19)
2.5 Accelerator-Driven Sources: Some Predecessors
197(2)
2.6 State-of-the-Art Accelerator Drivers for Neutron Sources
199(13)
2.6.1 Last-Generation Megawatt-Range Sources
199(6)
2.6.2 Medium-Power (100 kW) Sources
205(4)
2.6.3 Compact, Accelerator-Driven Sources
209(3)
2.7 Research Reactors
212(7)
2.7.1 Core Designs
213(4)
2.7.2 Reactor Vessel
217(2)
2.8 Future Prospects
219(8)
2.8.1 Accelerators
219(6)
2.8.2 Hybrid Systems
225(1)
2.8.3 Reactors
226(1)
2.9 Nonneutron-Scattering Uses of Neutron Sources
227(18)
2.9.1 Isotope Production, In-Vessel Irradiation, y-Radiation, and Neutron Activation Analysis
228(1)
2.9.2 Nuclear Physics and Engineering: Astroparticle Physics, Nuclear Structure and Reactions, and Transmutation of Nuclear Waste
228(1)
2.9.3 Hadron Physics: Neutrino-Related Phenomena
229(1)
2.9.4 Fundamental Physics: Foundations of Quantum Mechanics, Effects of Gravity on Isolated Particles, Search for Dark Matter Using Ultracold Neutrons, Tests, and Validations of the Standard Model of Particle Physics
230(1)
2.9.5 Use of Muon Beams for Condensed Matter and Fusion Research
231(1)
Acknowledgments
231(1)
Appendix A Some Basic Relationships
232(2)
Appendix B The Transport Equation for Neutrons
234(3)
References
237(8)
3 Experimental Techniques
245(76)
Masatoshi Arai
3.1 Introduction
246(1)
3.2 Scattering Measurements
247(7)
3.2.1 Cross Section
247(2)
3.2.2 Integrated Intensity and the Lorentz Factor
249(5)
3.3 Useful Neutrons for Condensed Matter Science
254(7)
3.3.1 Neutron Flux from Moderators
254(1)
3.3.2 Pulse Peak Structure
255(2)
3.3.3 Pulse Peak Width
257(1)
3.3.4 Choice of Parameters in Spallation Sources
257(2)
3.3.5 High-Energy Neutron Background
259(2)
3.4 Diffraction Techniques
261(14)
3.4.1 Powder Diffraction
262(9)
3.4.2 Single-Crystal Diffractometers
271(4)
3.5 Inelastic Scattering Techniques
275(18)
3.5.1 Triple-Axis Spectrometer
275(2)
3.5.2 Chopper Instruments
277(11)
3.5.3 Inverted-Geometry Instrument
288(5)
3.6 Instruments for Semi-Macroscopic Structures
293(7)
3.6.1 Small-Angle Neutron Scattering Instruments
293(3)
3.6.2 Neutron Spin-Echo Spectrometers
296(4)
3.7 Neutron Detectors
300(5)
3.7.1 3He-Gas Detectors
301(1)
3.7.2 Scintillation Detectors
301(4)
3.8 Beam Transport and Tailoring
305(16)
3.8.1 Neutron Optics
305(8)
3.8.2 Choppers
313(5)
References
318(3)
4 Structure of Complex Materials
321(32)
Silvia C. Capelli
4.1 Introduction
321(3)
4.2 Useful Properties of Neutrons
324(2)
4.2.1 Neutron Scattering Length
324(1)
4.2.2 A Particle with a Mass
324(2)
4.3 What can be Learnt from Neutron Diffraction Experiments?
326(13)
4.3.1 Hydrogen Bonding
326(3)
4.3.2 Proton Migration
329(3)
4.3.3 Transition Metal Hydrides
332(1)
4.3.4 Porous Materials
333(2)
4.3.5 Diffuse Scattering
335(4)
4.4 Outlook
339(9)
4.4.1 Neutron Sources
339(1)
4.4.2 Neutron Optics
340(1)
4.4.3 Detectors
341(1)
4.4.4 Samples and Sample Environment
342(5)
4.4.5 Software
347(1)
4.5 Conclusions
348(5)
References
349(4)
5 Large-Scale Structures
353(62)
Jeffrey Penfold
Ian M. Tucker
5.1 Introduction
353(3)
5.2 Experimental Details
356(9)
5.2.1 Fundamentals of Neutron Reflectivity
356(2)
5.2.2 Fundamentals of Small-Angle Neutron Scattering
358(3)
5.2.3 Experimental Details for Neutron Reflection
361(2)
5.2.4 Experimental Details for SANS
363(2)
5.3 Thin Films, Interfaces, and Solutions
365(44)
5.3.1 Adsorption at the Air---Solution Interface
365(9)
5.3.2 Adsorption at the Liquid---Solid Interface
374(4)
5.3.3 Structure of Biological Membranes
378(4)
5.3.4 Micelles
382(3)
5.3.5 Lamellar Phases and Vesicles
385(7)
5.3.6 Colloidal Particles
392(2)
5.3.7 Polymers in Solution, Melt, and Thin Films
394(10)
5.3.8 Proteins and Biomacromolecules in Solution and at Interfaces
404(5)
5.4 Summary and Future Prospects
409(6)
References
409(6)
6 Dynamics of Atoms and Molecules
415(56)
Mark R. Johnson
Gordon J. Kearley
6.1 Introduction
416(2)
6.2 Brief Review of Theoretical Concepts
418(1)
6.3 Modeling
419(3)
6.3.1 Mapping Potential Energy Surfaces
419(1)
6.3.2 Molecular Dynamics Simulation
420(1)
6.3.3 Empirical and Ab Initio Energy Calculation
420(2)
6.4 Instrumentation
422(5)
6.4.1 Three-Axis Spectrometers
422(1)
6.4.2 Time of Flight
422(1)
6.4.3 Neutron Compton Scattering Spectrometers
423(1)
6.4.4 Molecular Spectrometers
424(1)
6.4.5 Backscattering Spectrometers
425(1)
6.4.6 Neutron Spin-echo Instruments
426(1)
6.4.7 The Measured Neutron-Scattering Signal
427(1)
6.5 Oscillatory Motion, Incoherent Scattering
427(7)
6.5.1 Molecular Vibrations of Benzene
429(1)
6.5.2 Hydrogen-Bonded Systems
430(1)
6.5.3 Complex Hydrides
431(2)
6.5.4 Polymers
433(1)
6.6 Oscillatory Motion, Coherent Scattering
434(12)
6.6.1 Classic Phonons and Soft Modes in SrTiO3
435(1)
6.6.2 Negative Thermal Expansion
435(3)
6.6.3 Nanostructured Materials
438(1)
6.6.4 Oxygen-Ion Conductors---Brownmillerites
439(2)
6.6.5 Thermoelectrics---Skutterudites
441(1)
6.6.6 Pnictides
442(1)
6.6.7 Strontium Gallium Oxides
443(2)
6.6.8 Deoxyribonucleic acid
445(1)
6.7 Tunneling
446(7)
6.7.1 Rotational Tunneling
446(7)
6.7.2 Translational Tunneling
453(1)
6.8 Stochastic Relaxation/Dynamics
453(11)
6.8.1 Complex Diffusion
455(1)
6.8.2 Ligand Water Rotation
456(1)
6.8.3 Coherent QENS, Rotation
456(1)
6.8.4 Dynamical Transitions from Elastic Scans
457(2)
6.8.5 Diffusion of Coherent Scatterer CO2
459(1)
6.8.6 Water and Complex Diffusion
460(3)
6.8.7 Ionic Liquids
463(1)
6.9 Conclusion and Perspectives
464(7)
References
466(5)
Appendix: Neutron Scattering Lengths and Cross Sections
471(58)
Javier Dawidowski
Jose R. Granada
Javier R. Santisteban
Florencia Cantargi
Luis A. Rodriguez Palomino
A.1 Introduction
471(1)
A.2 Theoretical Background
472(10)
A.2.1 Scattering Length
472(4)
A.2.2 Spin-Dependent Scattering Lengths
476(1)
A.2.3 Neutron---Atom Interactions
477(5)
A.3 Methods of Measurement of Scattering Lengths
482(13)
A.3.1 Transmission
482(2)
A.3.2 Bragg Diffraction
484(2)
A.3.3 Dynamical Diffraction
486(2)
A.3.4 Prism Refraction
488(1)
A.3.5 Christiansen Filter
489(1)
A.3.6 Neutron Gravity Refractometer
490(1)
A.3.7 Neutron Interferometry
491(1)
A.3.8 Small-Angle Scattering
492(1)
A.3.9 Total Reflection
493(1)
A.3.10 Pseudomagnetic Method
493(1)
A.3.11 High-Energy Experiments
494(1)
A.4 Tables of Neutron Scattering Lengths and Cross Sections
495(34)
References
527(2)
Index 529
Felix Fernandez-Alonso graduated with a Ph.D. in Chemistry from Stanford University under the supervision of R.N. Zare. He has been Marie Curie Fellow with the Italian Research Council and Associate Lecturer in Chemistry with the Open University. He joined the ISIS Pulsed Neutron and Muon Source at the Rutherford Appleton Laboratory in the UK in 2003, where he is currently head of the Molecular Spectroscopy Group and coordinator of the Centre for Molecular Structure and Dynamics. He has been appointed Visiting Professor at University College London and Nottingham Trent University in the UK, and at the University of Orléans in France. He is also Fellow of the UK Royal Society of Chemistry and scientific consultant for the chemical industry.Dr. Fernandez-Alonsos current research interests focus on the development and subsequent exploitation of neutron scattering techniques in physical chemistry, with particular emphasis on materials-chemistry challenges of relevance to societal needs and long-term sustainability. These include gas and charge storage in nanostructured media, molecular and macromolecular intercalation phenomena, and solid-state protonics. He has approximately 100 refereed publications and is currently involved in several neutron instrumentation projects at ISIS and abroad. David L. Price obtained a Ph.D. in Physics from Cambridge University under the supervision of G. L. Squires. He has subsequently had a 40-year career in research and administration involving neutron and x-ray experiments and facilities. After a postdoctoral appointment at the High-Flux Beam Reactor (HFBR) at Brookhaven National Laboratory, he joined the staff at Argonne National Laboratory where he served variously as Senior Scientist, Director of the Solid-State Science Division and Director of the Intense Pulsed Neutron Source (IPNS) during its construction and commissioning phases. He later joined Oak Ridge National Laboratory as Executive Director of the High-Flux Isotope Reactor and Center for Neutron Scattering. He has been invited as Distinguished Visiting Professor at the Graduate University for Advanced Studies, Hayama, Japan, and as Visiting Fellow Commoner at Trinity College, Cambridge, UK. He received the Warren Prize of the American Crystallographic Association in 1997 and an Alexander Von Humboldt Research Award in 1998. He is a Fellow of the American Physical Society, the Institute of Physics, UK, and the Neutron Scattering Society of America.Dr. Prices specific research interests include order and disorder in solids and liquids, the dynamics of disordered systems, the glass transition and melting,neutron diffraction with isotope substitution, and deep inelastic and quasielastic neutron scattering. His monograph on High-Temperature Levitated Materials was published by Cambridge University Press in 2010. He has over 250 refereed publications and has designed and commissioned neutron scattering spectrometers at the HFBR and at the CP-5 Research Reactor and the IPNS at Argonne.