Muutke küpsiste eelistusi

E-raamat: Nonlinear Fiber Optics

(Institute of Optics, University of Rochester, NY, USA)
  • Formaat: PDF+DRM
  • Sari: Optics and Photonics
  • Ilmumisaeg: 29-Jan-2001
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780080479743
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 79,03 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Optics and Photonics
  • Ilmumisaeg: 29-Jan-2001
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780080479743
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This textbook for advanced students as well as engineers and technicians in the telecommunication industry and scientists working with fiber optics and optical communications presents the fundamental aspects of nonlinear fiber optics. Agrawal (optics, U. of New York, Rochester) covers such topics as pulse propagation in fibers, group-velocity dispersion, self- and cross-phase modulation, optical solitons, stimulated Raman and Brillouin scattering, polarization effects, and parametric processes. Applications are treated in a companion volume, Applications of Nonlinear Fiber Optics . Annotation c. Book News, Inc., Portland, OR (booknews.com)

The Optical Society of America (OSA) and SPIE – The International Society for Optical Engineering have awarded Govind Agrawal with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Fiber Optics, 3rd edition.

Nonlinear Fiber Optics, 3rd Edition, provides a comprehensive and up-to-date account of the nonlinear phenomena occurring inside optical fibers. It retains most of the material that appeared in the first edition, with the exception of Chapter 6, which is now devoted to the polarization effects relevant for light propagation in optical fibers. The contents include such important topics as self- and cross-phase modulation, stimulated Raman and Brillouin scattering, four-wave mixing, modulation instability, and optical solutons. A proper understanding of these topics is essential for scientists and engineers interested in various aspects of lightwave technology.

Such an ambitious objective increased the size of the book to the extent that it was necessary to create a separate but complimentary book, Applications of Nonlinear Fiber Optics, which is devoted to applications in the domain of lightwave technology.

This revised edition of Nonlinear Fiber Optics should serve well the needs of the scientific community including graduate students in Optics, Physics, and Electrical Engineering, engineers in the optical communication industry, and scientists working in fiber optics and nonlinear optics.
* Only book dealing with Nonlinear Fiber Optics
* Comprehensive up-to-date coverage of the entire field
* Problems at the end of each chapter suitable for a course
* Focus on fundamental aspects
* Can be used by graduate students doing research in or taking courses in nonlinear optics and optical communications

Muu info

* Only book dealing with Nonlinear Fiber Optics * Comprehensive up-to-date coverage of the entire field * Problems at the end of each chapter suitable for a course * Focus on fundamental aspects * Can be used by graduate students doing research in or taking courses in nonlinear optics and optical communications
Preface xv
Introduction
1(30)
Historical Perspective
1(2)
Fiber Characteristics
3(14)
Material and Fabrication
4(1)
Fiber Losses
5(2)
Chromatic Dispersion
7(6)
Polarization-Mode Dispersion
13(4)
Fiber Nonlinearities
17(5)
Nonlinear Refraction
17(2)
Stimulated Inelastic Scattering
19(1)
Importance of Nonlinear Effects
20(2)
Overview
22(9)
Problems
25(1)
References
25(6)
Pulse Propagation in Fibers
31(32)
Maxwell's Equations
31(3)
Fiber Modes
34(5)
Eigenvalue Equation
34(2)
Single-Mode Condition
36(1)
Characteristics of the Fundamental Mode
37(2)
Pulse-Propagation Equation
39(12)
Nonlinear Pulse Propagation
39(6)
Higher-Order Nonlinear Effects
45(6)
Numerical Methods
51(12)
Split-Step Fourier Method
51(4)
Finite-Difference Methods
55(2)
Problems
57(1)
References
58(5)
Group-Velocity Dispersion
63(34)
Different Propagation Regimes
63(3)
Dispersion-Induced Pulse Broadening
66(10)
Gaussian Pulses
67(2)
Chirped Gaussian Pulses
69(2)
Hyperbolic-Secant Pulses
71(1)
Super-Gaussian Pulses
72(3)
Experimental Results
75(1)
Third-Order Dispersion
76(10)
Changes in Pulse Shape
77(2)
Broadening Factor
79(3)
Arbitrary-Shape Pulses
82(3)
Ultrashort-Pulse Measurements
85(1)
Dispersion Management
86(11)
GVD-Induced Limitations
86(2)
Dispersion Compensation
88(2)
Compensation of Third-Order Dispersion
90(3)
Problems
93(1)
References
94(3)
Self-Phase Modulation
97(38)
SPM-Induced Spectral Broadening
97(12)
Nonlinear Phase Shift
98(2)
Changes in Pulse Spectra
100(4)
Effect of Pulse Shape and Initial Chirp
104(2)
Effect of Partial Coherence
106(3)
Effect of Group-Velocity Dispersion
109(13)
Pulse Evolution
109(4)
Broadening Factor
113(2)
Optical Wave Breaking
115(3)
Experimental Results
118(2)
Effect of Third-Order Dispersion
120(2)
Higher-Order Nonlinear Effects
122(13)
Self-Steepening
123(3)
Effect of GVD on Optical Shocks
126(2)
Intrapulse Raman Scattering
128(2)
Problems
130(1)
References
130(5)
Optical Solitions
135(68)
Modulation Instability
136(10)
Linear Stability Analysis
136(2)
Gain Spectrum
138(2)
Experimental Observation
140(2)
Ultrashort Pulse Generation
142(2)
Impact on Lightwave Systems
144(2)
Fiber Solitons
146(13)
Inverse Scattering Method
147(2)
Fundamental Soliton
149(3)
Higher-Order Solitons
152(2)
Experimental Confirmation
154(2)
Soliton Stability
156(3)
Other Types of Solitons
159(7)
Dark Solitons
159(5)
Dispersion-Managed Solitons
164(1)
Bistable Solitons
165(1)
Perturbation of Solitons
166(14)
Perturbation Methods
167(2)
Fiber Losses
169(2)
Soliton Amplification
171(5)
Soliton Interaction
176(4)
Higher-Order Effects
180(23)
Third-Order Dispersion
181(2)
Self-Steepening
183(3)
Intrapulse Raman Scattering
186(4)
Propagation of Femtosecond Pulses
190(2)
Problems
192(1)
References
193(10)
Polarization Effects
203(57)
Nonlinear Birefringence
204(6)
Origin of Nonlinear Birefringence
204(2)
Coupled-Mode Equations
206(2)
Elliptically Birefringent Fibers
208(2)
Nonlinear Phase Shift
210(8)
Nondispersive XPM
210(1)
Optical Kerr Effect
211(5)
Pulse Shaping
216(2)
Evolution of Polarization State
218(10)
Analytic Solution
219(2)
Poincare-Sphere Representation
221(3)
Polarization Instability
224(3)
Polarization Chaos
227(1)
Vector Modulation Instability
228(10)
Low-Birefringence Fibers
229(2)
High-Birefringence Fibers
231(3)
Isotropic Fibers
234(1)
Experimental Results
235(3)
Birefringence and Solitons
238(8)
Low-Birefringence Fibers
239(1)
High-Birefringence Fibers
240(3)
Soliton-Dragging Logic Gates
243(1)
Vector Solitons
244(2)
Random Birefringence
246(14)
Polarization-Mode Dispersion
246(2)
Polarization State of Solitons
248(4)
Problems
252(1)
References
253(7)
Cross-Phase Modulation
260(38)
XPM-Induced Nonlinear Coupling
261(4)
Nonlinear Refractive Index
261(2)
Coupled NLS Equations
263(1)
Propagation in Birefringent Fibers
264(1)
XPM-Induced Modulation Instability
265(5)
Linear Stability Analysis
265(3)
Experimental Results
268(2)
XPM-Paired Solitons
270(4)
Bright-Dark Soliton Pair
270(2)
Bright-Gray Soliton Pair
272(1)
Other Soliton Pairs
272(2)
Spectral and Temporal Effects
274(12)
Asymmetric Spectral Broadening
275(6)
Asymmetric Temporal Changes
281(3)
Higher-Order Nonlinear Effects
284(2)
Applications of XPM
286(12)
XPM-Induced Pulse Compression
286(3)
XPM-Induced Optical Switching
289(1)
XPM-Induced Nonreciprocity
290(3)
Problems
293(1)
References
294(4)
Stimulated Raman Scattering
298(57)
Basic Concepts
298(8)
Raman-Gain Spectrum
299(1)
Raman Threshold
300(4)
Coupled Amplitude Equations
304(2)
Quasi-Continuous SRS
306(14)
Single-Pass Raman Generation
306(3)
Raman Fiber Lasers
309(3)
Raman Fiber Amplifiers
312(6)
Raman-Induced Crosstalk
318(2)
SRS with Short Pump Pulses
320(13)
Pulse-Propagation Equations
320(1)
Nondispersive Case
321(3)
Effects of GVD
324(3)
Experimental Results
327(5)
Synchronously Pumped Raman Lasers
332(1)
Soliton Effects
333(10)
Raman Solitons
334(5)
Raman Soliton Lasers
339(2)
Soliton-Effect Pulse Compression
341(2)
Effect of Four-Wave Mixing
343(12)
Problems
345(1)
References
346(9)
Stimulated Brillouin Scattering
355(34)
Basic Concepts
355(4)
Physical Process
356(1)
Brillouin-Gain Spectrum
357(2)
Quasi-CW SBS
359(8)
Coupled Intensity Equations
360(1)
Brillouin Threshold
360(2)
Gain Saturation
362(2)
Experimental Results
364(3)
Dynamic Aspects
367(8)
Coupled Amplitude Equations
367(1)
Relaxation Oscillations
368(3)
Modulation Instability and Chaos
371(2)
Transient Regime
373(2)
Brillouin Fiber Lasers
375(5)
CW Operation
375(2)
Pulsed Operation
377(3)
SBS Applications
380(9)
Brillouin Fiber Amplifiers
380(3)
Fiber Sensors
383(1)
Problems
383(1)
References
384(5)
Parametric Processes
389(56)
Origin of Four-Wave Mixing
389(3)
Theory of Four-Wave Mixing
392(7)
Coupled Amplitude Equations
392(2)
Approximate Solution
394(2)
Effect of Phase Matching
396(1)
Ultrafast FWM
397(2)
Phase-Matching Techniques
399(13)
Physical Mechanisms
399(1)
Phase Matching in Multimode Fibers
400(4)
Phase Matching in Single-Mode Fibers
404(4)
Phase Matching in Birefringent Fibers
408(4)
Parametric Amplification
412(6)
Gain and Bandwidth
412(2)
Pump Depletion
414(2)
Parametric Amplifiers
416(1)
Parametric Oscillators
417(1)
FWM Applications
418(9)
Wavelength Conversion
419(1)
Phase Conjugation
420(2)
Squeezing
422(2)
Supercontinuum Generation
424(3)
Second-Harmonic Generation
427(18)
Experimental Results
427(2)
Physical Mechanism
429(2)
Simple Theory
431(3)
Quasi-Phase-Matching Technique
434(2)
Problems
436(1)
References
437(8)
Appendix A Decibel Units 445(2)
Appendix B Nonlinear Refractive Index 447(7)
Appendix C Acronyms 454(3)
Index 457
Govind P. Agrawal received his B.Sc. degree from the University of Lucknow in 1969 with honours. He was awarded a gold medal for achieving the top position in the university. Govind joined the Indian Institute of Technology at New Delhi in 1969 and received the M.Sc. and Ph.D. degrees in 1971 and 1974, respectively. After holding positions at the Ecole Polytechnique (France), the City University of New York, and the Laser company, Quantel, Orsay, France, Dr. Agrawal joined in 1981 the technical staff of the world-famous AT&T Bell Laboratories, Murray Hill, N.J., USA, where he worked on problems related to the development of semiconductor lasers and fiber-optic communication systems. He joined in 1989 the faculty of the Institute of Optics at the University of Rochester where he is a Professor of Optics. His research interests focus on quantum electronics, nonlinear optics, and optical communications. In particular, he has contributed significantly to the fields of semiconductor lasers, nonlinear fiber optics, and optical communications. He is an author or co-author of more than 250 research papers, several book chapters and review articles, and four books. He has also edited the books "Contemporary Nonlinear Optics" (Academic Press, 1992) and "Semiconductor Lasers: Past, Present and Future" (AIP Press, 1995). The books authored by Dr. Agrawal have influenced an entire generation of scientists. Several of them have been translated into Chinese, Japanese, Greek, and Russian.