Muutke küpsiste eelistusi

E-raamat: Nonlinear Fiber Optics

(Institute of Optics, University of Rochester, NY, USA)
  • Formaat: EPUB+DRM
  • Sari: Optics and Photonics
  • Ilmumisaeg: 10-Oct-2012
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780123973078
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 90,16 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Sari: Optics and Photonics
  • Ilmumisaeg: 10-Oct-2012
  • Kirjastus: Academic Press Inc
  • Keel: eng
  • ISBN-13: 9780123973078
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Since the 4th edition appeared, a fast evolution of the field has occurred. The fifth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure, as well as being used in the medical field.

Reflecting the big developments in research, this new edition includes major new content: slow light effects- Which offers a reduction in noise and power consumption, and more ordered network traffic- stimulated Brillouin scattering, vectorial treatment of highly nonlinear fibers, and a brand new chapter on supercontinuum generation in optical fibers.

  • Continues to be industry bestseller providing unique source of comprehensive coverage on the subject of nonlinear fiber optics
  • Updated coverage of intrapulse Raman scattering, four-wave mixing, and Harmonic Generation
  • Includes a new chapter excusively devoted to supercontinuum generation in optical fibers




Since the 4th edition appeared, a fast evolution of the field has occurred. The fifth edition of this classic work provides an up-to-date account of the nonlinear phenomena occurring inside optical fibers, the basis of all our telecommunications infastructure, as well as being used in the medical field.

Reflecting the big developments in research, this new edition includes major new content: slow light effects- Which offers a reduction in noise and power consumption, and more ordered network traffic- stimulated Brillouin scattering, vectorial treatment of highly nonlinear fibers, and a brand new chapter on supercontinuum generation in optical fibers.

  • Continues to be industry bestseller providing unique source of comprehensive coverage on the subject of nonlinear fiber optics
  • Updated coverage of intrapulse Raman scattering, four-wave mixing, and Harmonic Generation
  • Includes a new chapter excusively devoted to supercontinuum generation in optical fibers


Arvustused

"Taking into account recent research on polarization, additions have been made to chapters on stimulated Raman scattering and four-wave mixing. Targeted for optical engineers, researchers, scientist and graduate students, the 549-page volume addresses pulse propagation in fibers." --Photonics Spectra, January 2007

Muu info

The one and only "Classic" work in the field of nonlinear fiber optics!
Dedication v
Author Biography vii
Preface xix
Chapter 1 Introduction
1(26)
1.1 Historical Perspective
1(2)
1.2 Fiber Characteristics
3(12)
1.2.1 Material and Fabrication
4(1)
1.2.2 Fiber Losses
5(1)
1.2.3 Chromatic Dispersion
6(5)
1.2.4 Polarization-Mode Dispersion
11(4)
1.3 Fiber Nonlinearities
15(4)
1.3.1 Nonlinear Refraction
15(1)
1.3.2 Stimulated Inelastic Scattering
16(2)
1.3.3 Importance of Nonlinear Effects
18(1)
1.4 Overview
19(8)
Problems
21(1)
References
22(5)
Chapter 2 Pulse Propagation in Fibers
27(30)
2.1 Maxwell's Equations
27(3)
2.2 Fiber Modes
30(4)
2.2.1 Eigenvalue Equation
30(1)
2.2.2 Single-Mode Condition
31(1)
2.2.3 Characteristics of the Fundamental Mode
32(2)
2.3 Pulse-Propagation Equation
34(13)
2.3.1 Nonlinear Pulse Propagation
34(5)
2.3.2 Higher-Order Nonlinear Effects
39(2)
2.3.3 Raman Response Function and its Impact
41(4)
2.3.4 Extension to Multimode Fibers
45(2)
2.4 Numerical Methods
47(10)
2.4.1 Split-Step Fourier Method
47(4)
2.4.2 Finite-Difference Methods
51(1)
Problems
52(1)
References
53(4)
Chapter 3 Group-Velocity Dispersion
57(30)
3.1 Different Propagation Regimes
57(2)
3.2 Dispersion-Induced Pulse Broadening
59(9)
3.2.1 Gaussian Pulses
60(2)
3.2.2 Chirped Gaussian Pulses
62(2)
3.2.3 Hyperbolic-Secant Pulses
64(1)
3.2.4 Super-Gaussian Pulses
65(2)
3.2.5 Experimental Results
67(1)
3.3 Third-Order Dispersion
68(10)
3.3.1 Evolution of Chirped Gaussian Pulses
69(2)
3.3.2 Broadening Factor
71(3)
3.3.3 Arbitrary-Shape Pulses
74(2)
3.3.4 Ultrashort-Pulse Measurements
76(2)
3.4 Dispersion Management
78(9)
3.4.1 GVD-Induced Limitations
78(2)
3.4.2 Dispersion Compensation
80(1)
3.4.3 Compensation of Third-Order Dispersion
81(2)
Problems
83(1)
References
84(3)
Chapter 4 Self-Phase Modulation
87(42)
4.1 SPM-Induced Spectral Changes
87(11)
4.1.1 Nonlinear Phase Shift
88(2)
4.1.2 Changes in Pulse Spectra
90(3)
4.1.3 Effect of Pulse Shape and Initial Chirp
93(3)
4.1.4 Effect of Partial Coherence
96(2)
4.2 Effect of Group-Velocity Dispersion
98(13)
4.2.1 Pulse Evolution
98(2)
4.2.2 Broadening Factor
100(2)
4.2.3 Optical Wave Breaking
102(3)
4.2.4 Experimental Results
105(1)
4.2.5 Effect of Third-Order Dispersion
106(2)
4.2.6 SPM Effects in Fiber Amplifiers
108(3)
4.3 Semianalytic Techniques
111(4)
4.3.1 Moment Method
111(1)
4.3.2 Variational Method
112(2)
4.3.3 Specific Analytic Solutions
114(1)
4.4 Higher-Order Nonlinear Effects
115(14)
4.4.1 Self-Steepening
116(3)
4.4.2 Effect of GVD on Optical Shocks
119(2)
4.4.3 Intrapulse Raman Scattering
121(3)
Problems
124(1)
References
125(4)
Chapter 5 Optical Solitons
129(64)
5.1 Modulation Instability
129(10)
5.1.1 Linear Stability Analysis
130(1)
5.1.2 Gain Spectrum
131(2)
5.1.3 Experimental Results
133(2)
5.1.4 Ultrashort Pulse Generation
135(2)
5.1.5 Impact on Lightwave Systems
137(2)
5.2 Fiber Solitons
139(12)
5.2.1 Inverse Scattering Method
140(2)
5.2.2 Fundamental Soliton
142(2)
5.2.3 Second and Higher-Order Solitons
144(3)
5.2.4 Experimental Confirmation
147(1)
5.2.5 Soliton Stability
148(3)
5.3 Other Types of Solitons
151(8)
5.3.1 Dark Solitons
151(3)
5.3.2 Bistable Solitons
154(2)
5.3.3 Dispersion-Managed Solitons
156(1)
5.3.4 Optical Similaritons
156(3)
5.4 Perturbation of Solitons
159(11)
5.4.1 Perturbation Methods
159(2)
5.4.2 Fiber Losses
161(2)
5.4.3 Soliton Amplification
163(3)
5.4.4 Soliton Interaction
166(4)
5.5 Higher-Order Effects
170(23)
5.5.1 Moment Equations for Pulse Parameters
170(2)
5.5.2 Third-Order Dispersion
172(2)
5.5.3 Self-Steepening
174(2)
5.5.4 Intrapulse Raman Scattering
176(5)
5.5.5 Propagation of Femtosecond Pulses
181(2)
Problems
183(1)
References
184(9)
Chapter 6 Polarization Effects
193(52)
6.1 Nonlinear Birefringence
193(6)
6.1.1 Origin of Nonlinear Birefringence
194(2)
6.1.2 Coupled-Mode Equations
196(1)
6.1.3 Elliptically Birefringent Fibers
197(2)
6.2 Nonlinear Phase Shift
199(7)
6.2.1 Nondispersive XPM
199(1)
6.2.2 Optical Kerr Effect
200(4)
6.2.3 Pulse Shaping
204(2)
6.3 Evolution of Polarization State
206(9)
6.3.1 Analytic Solution
207(2)
6.3.2 Poincare-Sphere Representation
209(3)
6.3.3 Polarization Instability
212(2)
6.3.4 Polarization Chaos
214(1)
6.4 Vector Modulation Instability
215(9)
6.4.1 Low-Birefringence Fibers
215(3)
6.4.2 High-Birefringence Fibers
218(2)
6.4.3 Isotropic Fibers
220(1)
6.4.4 Experimental Results
221(3)
6.5 Birefringence and Solitons
224(9)
6.5.1 Low-Birefringence Fibers
225(1)
6.5.2 High-Birefringence Fibers
226(3)
6.5.3 Soliton-Dragging Logic Gates
229(1)
6.5.4 Vector Solitons
230(3)
6.6 Random Birefringence
233(12)
6.6.1 Polarization-Mode Dispersion
233(1)
6.6.2 Vector Form of the NLS Equation
234(2)
6.6.3 Effects of PMD on Solitons
236(3)
Problems
239(1)
References
240(5)
Chapter 7 Cross-Phase Modulation
245(50)
7.1 XPM-Induced Nonlinear Coupling
246(2)
7.1.1 Nonlinear Refractive Index
246(1)
7.1.2 Coupled NLS Equations
247(1)
7.2 XPM-Induced Modulation Instability
248(4)
7.2.1 Linear Stability Analysis
249(2)
7.2.2 Experimental Results
251(1)
7.3 XPM-Paired Solitons
252(6)
7.3.1 Bright-Dark Soliton Pair
252(2)
7.3.2 Bright-Gray Soliton Pair
254(1)
7.3.3 Periodic Solutions
255(1)
7.3.4 Multiple Coupled NLS Equations
256(2)
7.4 Spectral and Temporal Effects
258(10)
7.4.1 Asymmetric Spectral Broadening
259(5)
7.4.2 Asymmetric Temporal Changes
264(3)
7.4.3 Higher-Order Nonlinear Effects
267(1)
7.5 Applications of XPM
268(6)
7.5.1 XPM-Induced Pulse Compression
268(2)
7.5.2 XPM-Induced Optical Switching
270(2)
7.5.3 XPM-Induced Nonreciprocity
272(2)
7.6 Polarization Effects
274(10)
7.6.1 Vector Theory of XPM
274(1)
7.6.2 Polarization Evolution
275(3)
7.6.3 Polarization-Dependent Spectral Broadening
278(2)
7.6.4 Pulse Trapping and Compression
280(2)
7.6.5 XPM-Induced Wave Breaking
282(2)
7.7 XPM Effects in Birefringent Fibers
284(11)
7.7.1 Fibers with Low Birefringence
284(3)
7.7.2 Fibers with High Birefringence
287(2)
Problems
289(1)
References
290(5)
Chapter 8 Stimulated Raman Scattering
295(58)
8.1 Basic Concepts
295(10)
8.1.1 Raman-Gain Spectrum
296(1)
8.1.2 Raman Threshold
297(3)
8.1.3 Coupled Amplitude Equations
300(3)
8.1.4 Effect of Four-Wave Mixing
303(2)
8.2 Quasi-Continuous SRS
305(11)
8.2.1 Single-Pass Raman Generation
305(2)
8.2.2 Raman Fiber Lasers
307(3)
8.2.3 Raman Fiber Amplifiers
310(5)
8.2.4 Raman-Induced Crosstalk
315(1)
8.3 SRS with Short Pump Pulses
316(15)
8.3.1 Pulse-Propagation Equations
317(1)
8.3.2 Nondispersive Case
318(2)
8.3.3 Effects of GVD
320(3)
8.3.4 Raman-Induced Index Changes
323(2)
8.3.5 Experimental Results
325(3)
8.3.6 Synchronously Pumped Raman Lasers
328(2)
8.3.7 Short-Pulse Raman Amplification
330(1)
8.4 Soliton Effects
331(8)
8.4.1 Raman Solitons
331(4)
8.4.2 Raman Soliton Lasers
335(3)
8.4.3 Soliton-Effect Pulse Compression
338(1)
8.5 Polarization Effects
339(14)
8.5.1 Vector Theory of Raman Amplification
339(4)
8.5.2 PMD Effects on Raman Amplification
343(3)
Problems
346(1)
References
347(6)
Chapter 9 Stimulated Brillouin Scattering
353(44)
9.1 Basic Concepts
353(5)
9.1.1 Physical Process
354(1)
9.1.2 Brillouin-Gain Spectrum
354(4)
9.2 Quasi-CW SBS
358(8)
9.2.1 Brillouin Threshold
358(1)
9.2.2 Polarization Effects
359(1)
9.2.3 Techniques for Controlling the SBS Threshold
360(3)
9.2.4 Experimental Results
363(3)
9.3 Brillouin-Fiber Amplifiers
366(4)
9.3.1 Gain Saturation
366(1)
9.3.2 Amplifier Design and Applications
367(3)
9.4 SBS Dynamics
370(14)
9.4.1 Coupled Amplitude Equations
370(2)
9.4.2 SBS with Q-Switched Pulses
372(4)
9.4.3 SBS-Induced Index Changes
376(4)
9.4.4 Relaxation Oscillations
380(2)
9.4.5 Modulation Instability and Chaos
382(2)
9.5 Brillouin-Fiber Lasers
384(13)
9.5.1 CW Operation
384(4)
9.5.2 Pulsed Operation
388(3)
Problems
391(1)
References
392(5)
Chapter 10 Four-Wave Mixing
397(60)
10.1 Origin of Four-Wave Mixing
397(2)
10.2 Theory of Four-Wave Mixing
399(6)
10.2.1 Coupled Amplitude Equations
400(1)
10.2.2 Approximate Solution
401(1)
10.2.3 Effect of Phase Matching
402(2)
10.2.4 Ultrafast Four-Wave Mixing
404(1)
10.3 Phase-Matching Techniques
405(12)
10.3.1 Physical Mechanisms
405(1)
10.3.2 Phase Matching in Multimode Fibers
406(3)
10.3.3 Phase Matching in Single-Mode Fibers
409(5)
10.3.4 Phase Matching in Birefringent Fibers
414(3)
10.4 Parametric Amplification
417(14)
10.4.1 Review of Early Work
417(1)
10.4.2 Gain Spectrum and Its Bandwidth
418(3)
10.4.3 Single-Pump Configuration
421(4)
10.4.4 Dual-Pump Configuration
425(5)
10.4.5 Effects of Pump Depletion
430(1)
10.5 Polarization Effects
431(12)
10.5.1 Vector Theory of Four-Wave Mixing
432(2)
10.5.2 Polarization Dependence of Parametric Gain
434(3)
10.5.3 Linearly and Circularly Polarized Pumps
437(2)
10.5.4 Effect of Residual Fiber Birefringence
439(4)
10.6 Applications of Four-Wave Mixing
443(14)
10.6.1 Parametric Oscillators
443(2)
10.6.2 Ultrafast Signal Processing
445(2)
10.6.3 Quantum Correlation and Noise Squeezing
447(2)
10.6.4 Phase-Sensitive Amplification
449(2)
Problems
451(1)
References
452(5)
Chapter 11 Highly Nonlinear Fibers
457(40)
11.1 Nonlinear Parameter
457(10)
11.1.1 Units and Values of n2
458(1)
11.1.2 SPM-Based Techniques
459(3)
11.1.3 XPM-Based Technique
462(1)
11.1.4 FWM-Based Technique
463(1)
11.1.5 Variations in n2 Values
464(3)
11.2 Fibers with Silica Cladding
467(2)
11.3 Tapered Fibers with Air Cladding
469(5)
11.4 Microstructured Fibers
474(7)
11.4.1 Design and Fabrication
474(2)
11.4.2 Modal and Dispersive Properties
476(2)
11.4.3 Hollow-Core Photonic Crystal Fibers
478(2)
11.4.4 Bragg Fibers
480(1)
11.5 Non-Silica Fibers
481(6)
11.5.1 Lead-Silicate Fibers
482(3)
11.5.2 Chalcogenide Fibers
485(1)
11.5.3 Bismuth-Oxide Fibers
486(1)
11.6 Pulse Propagation in Narrow-Core Fibers
487(10)
11.6.1 Vectorial Theory
487(2)
11.6.2 Frequency-Dependent Mode Profiles
489(2)
Problems
491(1)
References
492(5)
Chapter 12 Novel Nonlinear Phenomena
497(56)
12.1 Soliton Fission and Dispersive Waves
497(9)
12.1.1 Fission of Second- and Higher-Order Solitons
498(3)
12.1.2 Generation of Dispersive Waves
501(5)
12.2 Intrapulse Raman Scattering
506(20)
12.2.1 Enhanced RIFS Through Soliton Fission
506(4)
12.2.2 Cross-correlation Technique
510(2)
12.2.3 Wavelength Tuning through RIFS
512(2)
12.2.4 Effects of Birefringence
514(2)
12.2.5 Suppression of Raman-Induced Frequency Shifts
516(4)
12.2.6 Soliton Dynamics Near a Zero-Dispersion Wavelength
520(3)
12.2.7 Multipeak Raman Solitons
523(3)
12.3 Four-Wave Mixing
526(8)
12.3.1 Role of Fourth-Order Dispersion
526(1)
12.3.2 Role of Fiber Birefringence
527(4)
12.3.3 Parametric Amplifiers and Wavelength Converters
531(1)
12.3.4 Tunable Fiber-Optic Parametric Oscillators
532(2)
12.4 Second-Harmonic Generation
534(7)
12.4.1 Physical Mechanisms
534(2)
12.4.2 Thermal Poling and Quasi-Phase Matching
536(3)
12.4.3 SHG Theory
539(2)
12.5 Third-Harmonic Generation
541(12)
12.5.1 THG in Highly Nonlinear Fibers
541(2)
12.5.2 Effects of Group-Velocity Mismatch
543(2)
12.5.3 Effects of Fiber Birefringence
545(1)
Problems
546(1)
References
547(6)
Chapter 13 Supercontinuum Generation
553(60)
13.1 Pumping with Picosecond Pulses
553(6)
13.1.1 Nonlinear Mechanisms
554(2)
13.1.2 Experimental Progress After 2000
556(3)
13.2 Pumping with Femtosecond Pulses
559(7)
13.2.1 Microstructured Silica Fibers
559(4)
13.2.2 Microstructured Nonsilica Fibers
563(3)
13.3 Temporal and Spectral Evolutions
566(13)
13.3.1 Numerical Modeling of Supercontinuum
566(4)
13.3.2 Role of Cross-Phase Modulation
570(3)
13.3.3 XPM-Induced Trapping
573(4)
13.3.4 Role of Four-Wave Mixing
577(2)
13.4 CW or Quasi-CW Pumping
579(6)
13.4.1 Nonlinear Mechanisms
579(3)
13.4.2 Experimental Progress
582(3)
13.5 Polarization Effects
585(5)
13.5.1 Birefringent Microstructured Fibers
586(1)
13.5.2 Nearly Isotropic Fibers
587(2)
13.5.3 Nonlinear Polarization Rotation in Isotropic Fibers
589(1)
13.6 Coherence Properties
590(8)
13.6.1 Spectral-Domain Degree of Coherence
591(3)
13.6.2 Techniques for Improving Coherence
594(2)
13.6.3 Spectral Incoherent Solitons
596(2)
13.7 Optical Rogue Waves
598(15)
13.7.1 L-Shaped Statistics of Pulse-to-Pulse Fluctuations
599(1)
13.7.2 Techniques for Controlling Rogue-Wave Statistics
600(2)
13.7.3 Modulation Instability Revisited
602(4)
Problems
606(1)
References
607(6)
Appendix A System of Units 613(2)
Appendix B Numerical Code for the NLS Equation 615(4)
Appendix C List of Acronyms 619(2)
Index 621
Govind P. Agrawal received his B.Sc. degree from the University of Lucknow in 1969 with honours. He was awarded a gold medal for achieving the top position in the university. Govind joined the Indian Institute of Technology at New Delhi in 1969 and received the M.Sc. and Ph.D. degrees in 1971 and 1974, respectively. After holding positions at the Ecole Polytechnique (France), the City University of New York, and the Laser company, Quantel, Orsay, France, Dr. Agrawal joined in 1981 the technical staff of the world-famous AT&T Bell Laboratories, Murray Hill, N.J., USA, where he worked on problems related to the development of semiconductor lasers and fiber-optic communication systems. He joined in 1989 the faculty of the Institute of Optics at the University of Rochester where he is a Professor of Optics. His research interests focus on quantum electronics, nonlinear optics, and optical communications. In particular, he has contributed significantly to the fields of semiconductor lasers, nonlinear fiber optics, and optical communications. He is an author or co-author of more than 250 research papers, several book chapters and review articles, and four books. He has also edited the books "Contemporary Nonlinear Optics" (Academic Press, 1992) and "Semiconductor Lasers: Past, Present and Future" (AIP Press, 1995). The books authored by Dr. Agrawal have influenced an entire generation of scientists. Several of them have been translated into Chinese, Japanese, Greek, and Russian.