Muutke küpsiste eelistusi

E-raamat: Novel Antimicrobial Agents and Strategies

Edited by (University of Central Lancashire, Preston, UK), Edited by (University of Central Lancashire, Preston, UK), Edited by (University of Central Lancashire, Preston, UK)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Aug-2014
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527676149
  • Formaat - PDF+DRM
  • Hind: 183,95 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
  • Formaat: PDF+DRM
  • Ilmumisaeg: 11-Aug-2014
  • Kirjastus: Blackwell Verlag GmbH
  • Keel: eng
  • ISBN-13: 9783527676149

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A complete survey of current and future antimicrobial drugs and therapies, from small-molecule antibiotics to antimicrobial peptides and their engineered mimetics, from enzymes to nucleic acid therapeutics, and from metallic nanoparticles to photo- and sonosensitizers.

By integrating knowledge from pharmacology, microbiology, molecular medicine, and engineering, researchers from Europe, the U.S. and Asia cover a broad spectrum of current and potential antimicrobial medications and treatments.
The result is a comprehensive survey ranging from small-molecule antibiotics to antimicrobial peptides and their engineered mimetics, from enzymes to nucleic acid therapeutics, from metallic nanoparticles to photo- and sonosensitizers and to phage therapy. In each case, the therapeutic approaches are compared in terms of their mechanisms, likelihood to induce resistance, and their efficiency in a global healthcare context.
Unrivaled knowledge for professionals in fundamental research, pharmaceutical development and clinical practice.

Arvustused

This would have been a valuable addition to help put some of these new methodologies into context.  (ChemMedChem, 1 September 2015)

List of Contributors xi
Preface xvii
1 The Problem of Microbial Drug Resistance 1(16)
Iza Radecka
Claire Martin
David Hill
1.1 Introduction
1(1)
1.2 History of the Origins, Development, and Use of Conventional Antibiotics
1(3)
1.3 Problems of Antibiotic Resistance
4(1)
1.4 Multiple Drug-Resistant (MDR), Extensively Drug-Resistant (XDR), and Pan-Drug-Resistant (PDR) Organisms
5(1)
1.5 MDR Mechanisms of Major Pathogens
5(6)
1.6 Antimicrobial Stewardship Programs
11(1)
1.7 Discussion
12(1)
Acknowledgment
13(1)
References
13(4)
2 Conventional Antibiotics - Revitalized by New Agents 17(14)
Anthony Coates
Yanmin Hu
2.1 Introduction
17(1)
2.2 Conventional Antibiotics
18(2)
2.3 The Principles of Combination Antibiotic Therapy
20(1)
2.4 Antibiotic Resistance Breakers: Revitalize Conventional Antibiotics
21(4)
2.4.1 p-Lactamase Inhibitors
21(2)
2.4.2 Aminoglycoside-Modifying Enzyme Inhibitors
23(1)
2.4.3 Antibiotic Efflux Pumps Inhibitors
23(1)
2.4.4 Synergy Associated with Bacterial Membrane Permeators
23(2)
2.5 Discussion
25(1)
Acknowledgments
26(1)
References
26(5)
3 Developing Novel Bacterial Targets: Carbonic Anhydrases as Antibacterial Drug Targets 31(16)
Clemente Capasso
Claudiu T. Supuran
3.1 Introduction
31(1)
3.2 Carbonic Anhydrases
31(1)
3.3 CA Inhibitors
32(1)
3.4 Classes of CAs Present in Bacteria
33(2)
3.5 Pathogenic Bacterial CAs
35(1)
3.6 α-CAs in Pathogenic Bacteria
35(2)
3.7 β-CAs in Pathogenic Bacteria
37(2)
3.8 γ-CAs from Pathogenic Bacteria
39(1)
3.9 Conclusions
40(1)
References
41(6)
4 Magainins - A Model for Development of Eukaryotic Antimicrobial Peptides (AMPs) 47(24)
Sarah R. Dennison
Frederick Harris
David A. Phoenix
4.1 Introduction
47(2)
4.2 Magainins and Their Antimicrobial Action
49(2)
4.3 Magainins as Antibiotics
51(4)
4.4 Other Antimicrobial Uses of Magainins
55(2)
4.5 Future Prospects for Magainins
57(1)
References
58(13)
5 Antimicrobial Peptides from Prokaryotes 71(20)
Maryam Hassan
Morten Kjos
Ingolf F. Nes
Dzung B. Diep
Farzaneh Lotfipour
5.1 Introduction
71(2)
5.2 Bacteriocins
73(6)
5.2.1 Microcins - Peptide Bacteriocins from Gram-Negative Bacteria
73(3)
5.2.2 Lanthibiotics - Post-translationally Modified Peptides from Gram-Positive Bacteria
76(1)
5.2.3 Non-modified Peptides from Gram-Positive Bacteria
77(2)
5.3 Applications of Prokaryotic AMPs
79(3)
5.3.1 Food Biopreservation
79(1)
5.3.2 Bacteriocinogenic Probiotics
80(1)
5.3.3 Clinical Application
81(1)
5.3.4 Applications in Dental Care
82(1)
5.4 Development and Discovery of Novel AMP
82(2)
References
84(7)
6 Peptidomimetics as Antimicrobial Agents 91(18)
Peng Teng
Haifan Wu
Jianfeng Cai
6.1 Introduction
91(2)
6.2 Antimicrobial Peptidomimetics
93(9)
6.2.1 Peptoids
93(1)
6.2.2 β-Peptides
94(2)
6.2.3 Arylamides
96(1)
6.2.4 β-Peptoid— Peptide Hybrid Oligomers
97(1)
6.2.5 Oligourea and γ4-Peptide-Based Oligomers
98(1)
6.2.6 AApeptides
98(15)
6.2.6.1 α-AApeptides
99(2)
6.2.6.2 γ-AApeptides
101(1)
6.3 Discussion
102(1)
Acknowledgments
103(1)
References
103(6)
7 Synthetic Biology and Therapies for Infectious Diseases 109(72)
Hiroki Ando
Robert Citorik
Sara Cleto
Sebastien Lemire
Mark Mimee
Timothy Lu
7.1 Current Challenges in the Treatment of Infectious Diseases
109(3)
7.2 Introduction to Synthetic Biology
112(1)
7.3 Vaccinology
113(9)
7.3.1 Genetic Engineering and Vaccine Development
114(5)
7.3.2 Rational Antigen Design Through Reverse Vaccinology
119(3)
7.4 Bacteriophages: A Re-emerging Solution?
122(11)
7.4.1 A Brief History of Bacteriophages
122(2)
7.4.2 Addressing the Problem of the Restricted Host Range of Phages
124(5)
7.4.3 Phage Genome Engineering for Enhanced Therapeutics
129(3)
7.4.4 Phages as Delivery Agents for Antibacterial Cargos
132(1)
7.5 Isolated Phage Parts as Antimicrobials
133(3)
7.5.1 Engineered Phage Lysins
133(2)
7.5.2 Pyocins: Deadly Phage Tails
135(1)
7.5.3 Untapped Reservoirs of Antibacterial Activity
136(1)
7.6 Predatory Bacteria and Probiotic Bacterial Therapy
136(3)
7.7 Natural Products Discovery and Engineering
139(18)
7.7.1 In Silico and In Vitro Genome Mining for Natural Products
140(4)
7.7.2 Strain Engineering for Natural Products
144(8)
7.7.2.1 Production of the Antimalarial Artemisinin
145(2)
7.7.2.2 Daptomycin (Cubicin)
147(1)
7.7.2.3 Echinomycin
147(1)
7.7.2.4 Clavulanic Acid
148(1)
7.7.2.5 Production of the Antiparasitic Avermectin and Its Analogs Doramectin and Ivermectin
149(1)
7.7.2.6 Production of Doxorubicin/Daunorubicin
149(1)
7.7.2.7 Development of Hosts for the Expression of Nonribosomal Peptides and Polyketides
150(2)
7.7.3 Generation of Novel Molecules by Rational Reprogramming
152(2)
7.7.4 Engineering NRPS and PKS Domains
154(1)
7.7.5 Activation of Cryptic Genes/Clusters
155(2)
7.7.6 Mutasynthesis as a Source of Novel Analogs
157(1)
7.8 Summary
157(1)
Acknowledgments
157(1)
References
158(23)
8 Nano-Antimicrobials Based on Metals 181(38)
Maria Chiara Sportelli
Rosario Anna Ricca
Nicola Cioffi
8.1 Introduction
181(1)
8.2 Silver Nano-antimicrobials
182(8)
8.2.1 Synthesis of Silver Nanostructures
182(3)
8.2.1.1 Physical Approaches
183(1)
8.2.1.2 Laser Ablation in Liquids
183(1)
8.2.1.3 Chemical Approaches
183(1)
8.2.1.4 Biological and Biotechnological Approaches
184(1)
8.2.1.5 Electrochemical Approaches
184(1)
8.2.2 Characterization of Silver Nanostructures
185(2)
8.2.3 Applications of Silver Nanostructures
187(3)
8.2.3.1 Silver-Based Nano-antimicrobials
187(3)
8.3 Copper Nano-antimicrobials
190(7)
8.3.1 Preparation and Applications of Antimicrobial Cu Nanostructures
190(7)
8.3.1.1 Physical Methods
190(2)
8.3.1.2 Wet-Chemical Methods
192(3)
8.3.1.3 Electrochemical Syntheses
195(1)
8.3.1.4 Laser Ablation in Liquids
196(1)
8.3.1.5 Biological Syntheses
197(1)
8.4 Zinc Oxide Nano-antimicrobials
197(4)
8.4.1 Synthesis of Zinc Oxide Nanostructures
197(23)
8.4.1.1 Physical Approaches
198(1)
8.4.1.2 Chemical Approaches
198(2)
8.4.1.3 Electrochemical Approaches
200(1)
8.5 Conclusions
201(1)
References
201(18)
9 Natural Products as Antimicrobial Agents - an Update 219(76)
Muhammad Saleem
9.1 Introduction
219(1)
9.2 Antimicrobial Natural Products from Plants
220(6)
9.2.1 Antimicrobial Alkaloids from Plants
220(3)
9.2.2 Antimicrobial Alkaloids from Microbial Sources
223(2)
9.2.3 Antimicrobial Alkaloids from Marine Sources
225(1)
9.3 Antimicrobial Natural Products Bearing an Acetylene Function
226(2)
9.4 Antimicrobial Carbohydrates
228(1)
9.5 Antimicrobial Natural Chromenes
228(1)
9.6 Antimicrobial Natural Coumarins
229(3)
9.6.1 Antimicrobial Coumarins from Plants
229(3)
9.6.1.1 Antimicrobial Coumarins from Bacteria
232(1)
9.7 Antimicrobial Flavonoids
232(5)
9.7.1 Antimicrobial Flavonoids from Plants
233(4)
9.8 Antimicrobial Iridoids
237(1)
9.8.1 Antimicrobial Iridoids from Plants
237(1)
9.9 Antimicrobial Lignans
238(2)
9.9.1 Antimicrobial Lignans from Plants
238(2)
9.10 Antimicrobial Phenolics Other Than Flavonoids and Lignans
240(7)
9.10.1 Antimicrobial Phenolics from Plants
240(4)
9.10.2 Antimicrobial Phenolics from Microbial Sources
244(2)
9.10.3 Antimicrobial Phenolics from Marine Source
246(1)
9.11 Antimicrobial Polypeptides
247(2)
9.12 Antimicrobial Polyketides
249(14)
9.12.1 Antimicrobial Polyketides as Macrolides
250(2)
9.12.2 Antimicrobial Polyketides as Quinones and Xanthones
252(9)
9.12.2.1 Antimicrobial Quinones and Xanthones from Plants
252(4)
9.12.2.2 Antimicrobial Quinones from Bacteria
256(1)
9.12.2.3 Antimicrobial Quinones and Xanthones from Fungi
257(4)
9.12.3 Antimicrobial Fatty Acids and Other polyketides
261(2)
9.13 Antimicrobial Steroids
263(4)
9.13.1 Antimicrobial Steroids from Plants
264(2)
9.13.2 Steroids from Fungi
266(1)
9.14 Antimicrobial Terpenoids
267(8)
9.14.1 Antimicrobial Terpenoids from Plants
267(6)
9.14.2 Antimicrobial Terpenoids from Microbial Sources
273(1)
9.14.3 Antimicrobial Terpenoids from Marine Sources
274(1)
9.15 Miscellaneous Antimicrobial Compounds
275(7)
9.15.1 Miscellaneous Antimicrobial Natural Products from Plants
275(3)
9.15.2 Miscellaneous Antimicrobials from Bacteria
278(2)
9.15.3 Miscellaneous Antimicrobials from Fungi
280(2)
9.16 Platensimycin Family as Antibacterial Natural Products
282(2)
References
284(11)
10 Photodynamic Antimicrobial Chemotherapy 295(36)
David A. Phoenix
Sarah R. Dennison
Frederick Harris
10.1 Introduction
295(1)
10.2 The Administration and Photoactivation of PS
296(5)
10.3 Applications of PACT Based on MB
301(2)
10.4 The Applications of PACT Based on ALA
303(5)
10.4.1 Food Decontamination Using PACT Based on ALA
303(2)
10.4.2 Dermatology Using PACT Based on ALA
305(3)
10.5 Future Prospects
308(2)
References
310(21)
11 The Antimicrobial Effects of Ultrasound 331(26)
Frederick Harris
Sarah R. Dennison
David A. Phoenix
11.1 Introduction
331(1)
11.2 The Antimicrobial Activity of Ultrasound Alone
332(3)
11.3 The Antimicrobial Activity of Assisted Ultrasound
335(6)
11.3.1 Synergistic Effects
336(2)
11.3.2 Sonosensitizers
338(3)
11.4 Future Prospects
341(2)
References
343(14)
12 Antimicrobial Therapy Based on Antisense Agents 357(30)
Glenda M. Beaman
Sarah R. Dennison
David A. Phoenix
12.1 Introduction
357(1)
12.2 Antisense Oligonucleotides
358(2)
12.3 First-Generation ASOs
360(1)
12.4 Second-Generation ASOs
361(1)
12.5 Third-Generation ASOs
362(2)
12.6 Antisense Antibacterials
364(1)
12.7 Broad-Spectrum Antisense Antibacterials
365(6)
12.8 Methicillin-Resistant Staphylococcus aureus (MRSA)
371(1)
12.9 RNA Interference (RNAi)
371(3)
12.10 Progress Using siRNA
374(2)
12.10.1 Mycobacterium Tuberculosis
374(1)
12.10.2 MRSA
375(1)
12.11 Discussion
376(1)
References
377(10)
13 New Delivery Systems - Liposomes for Pulmonary Delivery of Antibacterial Drugs 387(20)
Abdelbary M.A. Elhissi
Sarah R. Dennison
Waqar Ahmed
Kevin M.G. Taylor
David A. Phoenix
13.1 Introduction
387(2)
13.2 Pulmonary Drug Delivery
389(1)
13.3 Liposomes as Drug Carriers in Pulmonary Delivery
389(9)
13.3.1 Liposomes for Pulmonary Delivery of Antibacterial Drugs
390(8)
13.3.1.1 Delivery of Antibacterial Liposomes Using pMDIs
391(1)
13.3.1.2 Delivery of Antibacterial Liposomes Using DPIs
392(2)
13.3.1.3 Delivery of Antibacterial Liposomes Using Nebulizers
394(4)
13.4 Present and Future Trends of Liposome Research in Pulmonary Drug Delivery
398(3)
13.5 Conclusions
401(1)
References
401(6)
Index 407
Professor David Andrew Phoenix studied Biochemistry at degree and doctoral level at Liverpool University which in 2009 awarded him a Doctor of Science for his impact on the field. In 2000 he was appointed Professor of Biochemistry, at the University of Central Lancashire (UCLan) and has held visiting chairs in Canada and Russia. He has published over 150 papers as well as a number of edited collections and monographs. He is a Fellow of the Royal Society of Chemistry, The Society of Biology, The Institute of Mathematics and Its Applications and the Royal Society of Medicine. Since 2008 he has been the Deputy Vice Chancellor of UCLan and also chairs a research institute in Shenzhen focused on nanotechnology and biomedical engineering. He was made an Officer of the Most Excellent Order of the British Empire in 2010 for services to Science and Higher Education and recognized as an Academician by the Academy of Social Sciences in 2012.

Dr. Frederick Harris studied at UCLan, graduating with a Bachelor of Science in Biochemistry and Microbiology in 1993 before gaining his Doctorate for work on the penicillin-binding proteins of Escherichia coli in 1998. Subsequently, he has undertaken research at Utrecht University and the Leibniz-Centre for Medicine and Biosciences, Germany. In 2000, Frederick started as a Research Fellow at UCLan and now has more than 75 publications to his name, which primarily focus on antimicrobial and anticancer peptides.

Dr. Sarah Rachel Dennison graduated from the University of Wales, Bangor with a Bachelor of Science in Environmental Biology in 1999. Subsequently, she undertook postgraduate research in Biochemistry / Biophysics, which led to a doctorate in 2004. Currently, Sarah is a Research Associate in the School of Pharmacy and Biomedical Sciences at UCLan where she is investigating the role of amphiphilicity in the function of antimicrobial peptides using a number of biophysical techniques.