Muutke küpsiste eelistusi

E-raamat: Particle Accelerator Physics

  • Formaat: PDF+DRM
  • Sari: Graduate Texts in Physics
  • Ilmumisaeg: 24-Jul-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319183176
  • Formaat - PDF+DRM
  • Hind: 4,08 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Sari: Graduate Texts in Physics
  • Ilmumisaeg: 24-Jul-2015
  • Kirjastus: Springer International Publishing AG
  • Keel: eng
  • ISBN-13: 9783319183176

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book by Helmut Wiedemann is a well-established, classic text, providing an in-depth and comprehensive introduction to the field of high-energy particle acceleration and beam dynamics.

The present 4th edition has been significantly revised, updated and expanded. The newly conceived Part I is an elementary introduction to the subject matter for undergraduate students. Part II gathers the basic tools in preparation of a more advanced treatment, summarizing the essentials of electrostatics and electrodynamics as well as of particle dynamics in electromagnetic fields. Part III is an extensive primer in beam dynamics, followed, in Part IV, by an introduction and description of the main beam parameters and including a new chapter on beam emittance and lattice design. Part V is devoted to the treatment of perturbations in beam dynamics. Part VI then discusses the details of charged particle acceleration. Parts VII and VIII introduce the more advanced topics of coupled beam dynamics and describe very intense beams – a number of additional beam instabilities are introduced and reviewed in this new edition. Part IX is an exhaustive treatment of radiation from accelerated charges and introduces important sources of coherent radiation such as synchrotrons and free-electron lasers. The appendices at the end of the book gather useful mathematical and physical formulae, parameters and units. Solutions to many end-of-chapter problems are given.

This textbook is suitable for an intensive two-semester course starting at the senior undergraduate level.

Part I Introduction
1 Introduction to Accelerator Physics
3(40)
1.1 Short Historical Overview
3(4)
1.2 Particle Accelerator Systems
7(4)
1.2.1 Main Components of Accelerator Facilities
7(3)
1.2.2 Applications of Particle Accelerators
10(1)
1.3 Definitions and Formulas
11(3)
1.3.1 Units and Dimensions
11(2)
1.3.2 Maxwell's Equations
13(1)
1.4 Primer in Special Relativity
14(12)
1.4.1 Lorentz Transformation
15(3)
1.4.2 Lorentz Invariance
18(4)
1.4.3 Spatial and Spectral Distribution of Radiation
22(2)
1.4.4 Particle Collisions at High Energies
24(2)
1.5 Principles of Particle-Beam Dynamics
26(17)
1.5.1 Electromagnetic Fields of Charged Particles
26(1)
1.5.2 Vector and Scalar Potential
27(1)
1.5.3 Wave Equation
28(2)
1.5.4 Induction
30(1)
1.5.5 Lorentz Force
30(1)
1.5.6 Equation of Motion
31(2)
1.5.7 Charged Particles in an Electromagnetic Field
33(1)
1.5.8 Linear Equation of Motion
34(1)
1.5.9 Energy Conservation
35(2)
1.5.10 Stability of a Charged-Particle Beam
37(4)
References
41(2)
2 Linear Accelerators
43(16)
2.1 Principles of Linear Accelerators
43(5)
2.1.1 Charged Particles in Electric Fields
44(1)
2.1.2 Electrostatic Accelerators
45(3)
2.2 Electric Field Components
48(6)
2.2.1 Electrostatic Deflectors
48(1)
2.2.2 Electrostatic Focusing Devices
49(2)
2.2.3 Iris Doublet
51(1)
2.2.4 Einzellens
52(2)
2.3 Acceleration by rf Fields
54(5)
2.3.1 Basic Principle of Microwave Linear Accelerators
54(3)
References
57(2)
3 Circular Accelerators
59(24)
3.1 Betatron
60(3)
3.2 Weak Focusing
63(3)
3.3 Adiabatic Damping
66(2)
3.4 Acceleration by rf Fields
68(15)
3.4.1 Microtron
68(2)
3.4.2 Cyclotron
70(3)
3.4.3 Synchro-Cyclotron
73(1)
3.4.4 Isochron Cyclotron
74(1)
3.4.5 Synchrotron
75(2)
3.4.6 Storage Ring
77(1)
3.4.7 Summary of Characteristic Parameters
77(2)
References
79(4)
Part II Tools We Need
4 Elements of Classical Mechanics
83(16)
4.1 How to Formulate a Lagrangian?
85(1)
4.1.1 The Lagrangian for a Charged Particle in an EM-Field
85(1)
4.2 Lorentz Force
86(1)
4.3 Frenet-Serret Coordinates
87(1)
4.4 Hamiltonian Formulation
88(11)
4.4.1 Cyclic Variables
90(1)
4.4.2 Canonical Transformations
90(3)
4.4.3 Curvilinear Coordinates
93(2)
4.4.4 Extended Hamiltonian
95(1)
4.4.5 Change of Independent Variable
96(2)
References
98(1)
5 Particle Dynamics in Electro-Magnetic Fields
99(26)
5.1 The Lorentz Force
99(1)
5.2 Fundamentals of Charged Particle Beam Optics
100(6)
5.2.1 Particle Beam Guidance
100(2)
5.2.2 Particle Beam Focusing
102(4)
5.3 Equation of Motion
106(3)
5.4 Equations of Motion from the Lagrangian and Hamiltonian
109(7)
5.4.1 Equations of Motion from Lagrangian
110(2)
5.4.2 Canonical Momenta
112(1)
5.4.3 Equation of Motion from Hamiltonian
112(2)
5.4.4 Harmonic Oscillator
114(1)
5.4.5 Action-Angle Variables
115(1)
5.5 Solutions of the Linear Equations of Motion
116(9)
5.5.1 Linear Unperturbed Equation of Motion
117(1)
5.5.2 Matrix Formulation
118(1)
5.5.3 Wronskian
119(1)
5.5.4 Perturbation Terms
120(3)
References
123(2)
6 Electromagnetic Fields
125(52)
6.1 Pure Multipole Field Expansion
125(13)
6.1.1 Electromagnetic Potentials and Fields for Beam Dynamics
126(2)
6.1.2 Fields, Gradients and Multipole Strength Parameter
128(3)
6.1.3 Main Magnets for Beam Dynamics
131(6)
6.1.4 Multipole Misalignment and "Spill-down"
137(1)
6.2 Main Magnet Design Criteria
138(7)
6.2.1 Design Characteristics of Dipole Magnets
138(2)
6.2.2 Quadrupole Design Concepts
140(5)
6.3 Magnetic Field Measurement
145(7)
6.3.1 Hall Probe
147(1)
6.3.2 Rotating Coil
148(4)
6.4 General Transverse Magnetic-Field Expansion
152(8)
6.4.1 Pure Multipole Magnets
153(2)
6.4.2 Kinematic Terms
155(5)
6.5 Third-Order Differential Equation of Motion
160(5)
6.6 Longitudinal Field Devices
165(2)
6.7 Periodic Wiggler Magnets
167(5)
6.7.1 Wiggler Field Configuration
168(4)
6.8 Electrostatic Quadrupole
172(5)
References
174(3)
Part III Beam Dynamics
7 Single Particle Dynamics
177(36)
7.1 Linear Beam Transport Systems
178(2)
7.1.1 Nomenclature
179(1)
7.2 Matrix Formalism in Linear Beam Dynamics
180(10)
7.2.1 Driftspace
182(1)
7.2.2 Quadrupole Magnet
182(2)
7.2.3 Thin Lens Approximation
184(3)
7.2.4 Quadrupole End Field Effects
187(3)
7.3 Focusing in Bending Magnets
190(15)
7.3.1 Sector Magnets
191(2)
7.3.2 Fringe Field Effects
193(2)
7.3.3 Finite Pole Gap
195(1)
7.3.4 Wedge Magnets
196(2)
7.3.5 Rectangular Magnet
198(2)
7.3.6 Focusing in a Wiggler Magnet
200(3)
7.3.7 Hard-Edge Model of Wiggler Magnets
203(2)
7.4 Elements of Beam Dynamics
205(8)
7.4.1 Building Blocks for Beam Transport Lines
205(3)
7.4.2 Isochronous Systems
208(3)
References
211(2)
8 Particle Beams and Phase Space
213(40)
8.1 Beam Emittance
214(13)
8.1.1 Liouville's Theorem
215(3)
8.1.2 Transformation in Phase Space
218(4)
8.1.3 Beam Matrix
222(5)
8.2 Betatron Functions
227(4)
8.2.1 Beam Envelope
230(1)
8.3 Beam Dynamics in Terms of Betatron Functions
231(5)
8.3.1 Beam Dynamics in Normalized Coordinates
233(3)
8.4 Dispersive Systems
236(17)
8.4.1 Analytical Solution
237(1)
8.4.2 3 × 3-Transformation Matrices
238(2)
8.4.3 Linear Achromat
240(4)
8.4.4 Spectrometer
244(1)
8.4.5 Measurement of Beam Energy Spectrum
245(3)
8.4.6 Path Length and Momentum Compaction
248(3)
References
251(2)
9 Longitudinal Beam Dynamics
253(50)
9.1 Longitudinal Particle Motion
254(5)
9.1.1 Longitudinal Phase Space Dynamics
256(3)
9.2 Equation of Motion in Phase Space
259(15)
9.2.1 Small Oscillation Amplitudes
262(4)
9.2.2 Phase Stability
266(4)
9.2.3 Acceleration of Charged Particles
270(4)
9.3 Longitudinal Phase Space Parameters
274(12)
9.3.1 Separatrix Parameters
274(1)
9.3.2 Momentum Acceptance
275(3)
9.3.3 Bunch Length
278(2)
9.3.4 Longitudinal Beam Emittance
280(2)
9.3.5 Phase Space Matching
282(4)
9.4 Higher-Order Phase Focusing
286(17)
9.4.1 Dispersion Function in Higher Order
287(2)
9.4.2 Path Length in Higher Order
289(2)
9.4.3 Higher Order Momentum Compaction Factor
291(1)
9.4.4 Higher-Order Phase Space Motion
292(4)
9.4.5 Stability Criteria
296(6)
References
302(1)
10 Periodic Focusing Systems
303(50)
10.1 FODO Lattice
304(11)
10.1.1 Scaling of FODO Parameters
305(4)
10.1.2 Betatron Motion in Periodic Structures
309(2)
10.1.3 General FODO Lattice
311(4)
10.2 Beam Dynamics in Periodic Closed Lattices
315(24)
10.2.1 Hill's Equation
315(3)
10.2.2 Periodic Betatron Functions
318(3)
10.2.3 Periodic Dispersion Function
321(8)
10.2.4 Periodic Lattices in Circular Accelerators
329(10)
10.3 FODO Lattice and Acceleration
339(14)
10.3.1 Lattice Structure
339(2)
10.3.2 Transverse Beam Dynamics and Acceleration
341(8)
References
349(4)
Part IV Beam Parameters
11 Particle Beam Parameters
353(48)
11.1 Definition of Beam Parameters
353(5)
11.1.1 Beam Energy
353(1)
11.1.2 Time Structure
354(1)
11.1.3 Beam Current
354(2)
11.1.4 Beam Dimensions
356(2)
11.2 Damping
358(7)
11.2.1 Robinson Criterion
358(7)
11.3 Particle Distribution in Longitudinal Phase Space
365(3)
11.3.1 Energy Spread
366(2)
11.3.2 Bunch Length
368(1)
11.4 Transverse Beam Emittance
368(7)
11.4.1 Equilibrium Beam Emittance
369(2)
11.4.2 Emittance Increase in a Beam Transport Line
371(1)
11.4.3 Vertical Beam Emittance
371(2)
11.4.4 Beam Sizes
373(2)
11.4.5 Beam Divergence
375(1)
11.5 Variation of the Damping Distribution
375(2)
11.5.1 Damping Partition and Rf-Frequency
375(2)
11.6 Variation of the Equilibrium Beam Emittance
377(5)
11.6.1 Beam Emittance and Wiggler Magnets
377(3)
11.6.2 Damping Wigglers
380(2)
11.7 Robinson Wiggler
382(3)
11.7.1 Damping Partition and Synchrotron Oscillation
382(2)
11.7.2 Can We Eliminate the Beam Energy Spread?
384(1)
11.8 Beam Life Time
385(16)
11.8.1 Beam Lifetime and Vacuum
386(9)
11.8.2 Ultra High Vacuum System
395(4)
References
399(2)
12 Vlasov and Fokker--Planck Equations
401(36)
12.1 The Vlasov Equation
402(9)
12.1.1 Betatron Oscillations and Perturbations
408(2)
12.1.2 Damping
410(1)
12.2 Damping of Oscillations in Electron Accelerators
411(11)
12.2.1 Damping of Synchrotron Oscillations
412(4)
12.2.2 Damping of Vertical Betatron Oscillations
416(3)
12.2.3 Robinson's Damping Criterion
419(3)
12.2.4 Damping of Horizontal Betatron Oscillations
422(1)
12.3 The Fokker--Planck Equation
422(15)
12.3.1 Stationary Solution of the Fokker--Planck Equation
425(5)
12.3.2 Particle Distribution within a Finite Aperture
430(2)
12.3.3 Particle Distribution in the Absence of Damping
432(3)
References
435(2)
13 Equilibrium Particle Distribution
437(22)
13.1 Particle Distribution in Phase Space
437(4)
13.1.1 Diffusion Coefficient and Synchrotron Radiation
438(2)
13.1.2 Quantum Excitation of Beam Emittance
440(1)
13.2 Equilibrium Beam Emittance
441(3)
13.2.1 Horizontal Equilibrium Beam Emittance
441(1)
13.2.2 Vertical Equilibrium Beam Emittance
442(2)
13.3 Equilibrium Energy Spread and Bunch Length
444(2)
13.3.1 Equilibrium Beam Energy Spread
444(1)
13.3.2 Equilibrium Bunch Length
444(2)
13.4 Phase-Space Manipulation
446(7)
13.4.1 Exchange of Transverse Phase-Space Parameters
446(1)
13.4.2 Bunch Compression
446(3)
13.4.3 Alpha Magnet
449(4)
13.5 Polarization of a Particle Beam
453(6)
References
457(2)
14 Beam Emittance and Lattice Design
459(18)
14.1 Equilibrium Beam Emittance in Storage Rings
461(4)
14.1.1 FODO Lattice
461(1)
14.1.2 Minimum Beam Emittance
462(3)
14.2 Absolute Minimum Emittance
465(3)
14.3 Beam Emittance in Periodic Lattices
468(9)
14.3.1 The Double Bend Achromat Lattice (DBA)
469(1)
14.3.2 The FODO Lattice
470(2)
14.3.3 Optimum Emittance for Colliding Beam Storage Rings
472(1)
References
472(5)
Part V Perturbations
15 Perturbations in Beam Dynamics
477(62)
15.1 Magnet Field and Alignment Errors
478(2)
15.1.1 Self Compensation of Perturbations
479(1)
15.2 Dipole Field Perturbations
480(19)
15.2.1 Dipole Field Errors and Dispersion Function
482(1)
15.2.2 Perturbations in Open Transport Lines
482(2)
15.2.3 Existence of Equilibrium Orbits
484(2)
15.2.4 Closed Orbit Distortion
486(4)
15.2.5 Statistical Distribution of Dipole Field and Alignment Errors
490(2)
15.2.6 Dipole Field Errors in Insertion Devices
492(2)
15.2.7 Closed Orbit Correction
494(2)
15.2.8 Response Matrix
496(1)
15.2.9 Orbit Correction with Single Value Decomposition (SVD)
497(2)
15.3 Quadrupole Field Perturbations
499(10)
15.3.1 Betatron Tune Shift
500(2)
15.3.2 Optics Perturbation Due to Insertion Devices
502(1)
15.3.3 Resonances and Stop Band Width
503(3)
15.3.4 Perturbation of Betatron Function
506(3)
15.4 Chromatic Effects in a Circular Accelerator
509(13)
15.4.1 Chromaticity
509(4)
15.4.2 Chromaticity Correction
513(1)
15.4.3 Chromaticity in Higher Approximation
514(3)
15.4.4 Non-linear Chromaticity
517(5)
15.5 Kinematic Perturbation Terms
522(2)
15.6 Perturbation Methods in Beam Dynamics
524(7)
15.6.1 Periodic Distribution of Statistical Perturbations
525(3)
15.6.2 Periodic Perturbations in Circular Accelerators
528(2)
15.6.3 Statistical Methods to Evaluate Perturbations
530(1)
15.7 Control of Beam Size in Transport Lines
531(8)
References
538(1)
16 Resonances
539(26)
16.1 Lattice Resonances
539(8)
16.1.1 Resonance Conditions
540(4)
16.1.2 Coupling Resonances
544(1)
16.1.3 Resonance Diagram
545(2)
16.2 Hamiltonian Resonance Theory
547(13)
16.2.1 Non-linear Hamiltonian
547(3)
16.2.2 Resonant Terms
550(3)
16.2.3 Resonance Patterns and Stop-Band Width
553(2)
16.2.4 Half-Integer Stop-Band
555(1)
16.2.5 Separatrices
556(2)
16.2.6 General Stop-Band Width
558(2)
16.3 Third-Order Resonance
560(5)
16.3.1 Particle Motion in Phase Space
563(1)
References
564(1)
17 Hamiltonian Nonlinear Beam Dynamics
565(38)
17.1 Higher-Order Beam Dynamics
565(8)
17.1.1 Multipole Errors
565(4)
17.1.2 Non-linear Matrix Formalism
569(4)
17.2 Aberrations
573(15)
17.2.1 Geometric Aberrations
575(6)
17.2.2 Filamentation of Phase Space
581(3)
17.2.3 Chromatic Aberrations
584(3)
17.2.4 Particle Tracking
587(1)
17.3 Hamiltonian Perturbation Theory
588(15)
17.3.1 Tune Shift in Higher Order
595(4)
References
599(4)
Part VI Acceleration
18 Charged Particle Acceleration
603(38)
18.1 Rf-Waveguides and Cavities
603(11)
18.1.1 Wave Equation
604(1)
18.1.2 Rectangular Waveguide Modes
605(5)
18.1.3 Cylindrical Waveguide Modes
610(4)
18.2 Rf-Cavities
614(9)
18.2.1 Square Cavities
614(1)
18.2.2 Cylindrical Cavity
614(2)
18.2.3 Energy Gain
616(1)
18.2.4 Rf-Cavity as an Oscillator
617(2)
18.2.5 Cavity Losses and Shunt Impedance
619(4)
18.3 Rf-Parameters
623(2)
18.3.1 Synchronous Phase and Rf-voltage
625(1)
18.4 Linear Accelerator
625(9)
18.4.1 Basic Waveguide Parameters
626(6)
18.4.2 Particle Capture in a Linear Accelerator Field
632(2)
18.5 Preinjector and Beam Preparation
634(7)
18.5.1 Prebuncher
634(2)
18.5.2 Beam Chopper
636(2)
18.5.3 Buncher Section
638(2)
References
640(1)
19 Beam-Cavity Interaction
641(28)
19.1 Coupling Between rf-Field and Particles
641(4)
19.1.1 Network Modelling of an Accelerating Cavity
642(3)
19.2 Beam Loading and Rf-System
645(5)
19.3 Higher-Order Mode Losses in an Rf-Cavity
650(4)
19.3.1 Efficiency of Energy Transfer from Cavity to Beam
653(1)
19.4 Beam Loading
654(2)
19.5 Phase Oscillation and Stability
656(13)
19.5.1 Robinson Damping
657(5)
19.5.2 Potential Well Distortion
662(3)
References
665(4)
Part VII Coupled Motion
20 Dynamics of Coupled Motion
669(32)
20.1 Equations of Motion in Coupled Systems
669(9)
20.1.1 Coupled Beam Dynamics in Skew Quadrupoles
670(2)
20.1.2 Particle Motion in a Solenoidal Field
672(3)
20.1.3 Transformation Matrix for a Solenoid Magnet
675(3)
20.2 Betatron Functions for Coupled Motion
678(1)
20.3 Conjugate Trajectories
679(6)
20.4 Hamiltonian and Coupling
685(16)
20.4.1 Linearly Coupled Motion
686(9)
20.4.2 Higher-Order Coupling Resonances
695(1)
20.4.3 Multiple Resonances
695(2)
References
697(4)
Part VIII Intense Beams
21 Statistical and Collective Effects
701(36)
21.1 Statistical Effects
702(6)
21.1.1 Schottky Noise
702(2)
21.1.2 Stochastic Cooling
704(1)
21.1.3 Touschek Effect
705(1)
21.1.4 Intra-Beam Scattering
706(2)
21.2 Collective Self Fields
708(19)
21.2.1 Self Field for Elliptical Particle Beams
709(3)
21.2.2 Beam--Beam Effect
712(3)
21.2.3 Transverse Self Fields
715(1)
21.2.4 Fields from Image Charges
715(5)
21.2.5 Space-Charge Effects
720(5)
21.2.6 Longitudinal Space-Charge Field
725(2)
21.3 Beam-Current Spectrum
727(10)
21.3.1 Longitudinal Beam Spectrum
727(3)
21.3.2 Transverse Beam Spectrum
730(4)
References
734(3)
22 Wake Fields and Instabilities
737(62)
22.1 Definitions of Wake Field and Impedance
738(13)
22.1.1 Parasitic Mode Losses and Impedances
739(4)
22.1.2 Longitudinal Wake Fields
743(6)
22.1.3 Transverse Wake Fields
749(1)
22.1.4 Panofsky-Wenzel Theorem
750(1)
22.2 Impedances in an Accelerator Environment
751(5)
22.2.1 Space-Charge Impedance
751(1)
22.2.2 Resistive-Wall Impedance
752(1)
22.2.3 Cavity-Like Structure Impedance
753(1)
22.2.4 Overall Accelerator Impedance
754(2)
22.2.5 Broad-Band Wake Fields in a Linear Accelerator
756(1)
22.3 Coasting-Beam Instabilities
756(15)
22.3.1 Negative-Mass Instability
757(3)
22.3.2 Dispersion Relation
760(7)
22.3.3 Landau Damping
767(2)
22.3.4 Transverse Coasting-Beam Instability
769(2)
22.4 Longitudinal Single-Bunch Effects
771(8)
22.4.1 Potential-Well Distortion
771(8)
22.5 Transverse Single-Bunch Instabilities
779(10)
22.5.1 Beam Break-Up in Linear Accelerators
779(2)
22.5.2 Fast Head-Tail Effect
781(5)
22.5.3 Head-Tail Instability
786(3)
22.6 Multi-Bunch Instabilities
789(10)
References
795(4)
Part IX Synchrotron Radiation
23 Fundamental Processes
799(16)
23.1 Radiation from Moving Charges
799(5)
23.1.1 Why Do Charged Particles Radiate?
800(1)
23.1.2 Spontaneous Synchrotron Radiation
801(1)
23.1.3 Stimulated Radiation
802(1)
23.1.4 Electron Beam
803(1)
23.2 Conservation Laws and Radiation
804(3)
23.2.1 Cherenkov Radiation
805(1)
23.2.2 Compton Radiation
806(1)
23.3 Electromagnetic Radiation
807(8)
23.3.1 Coulomb Regime
808(1)
23.3.2 Radiation Regime
809(4)
References
813(2)
24 Overview of Synchrotron Radiation
815(42)
24.1 Radiation Sources
816(14)
24.1.1 Bending Magnet Radiation
816(1)
24.1.2 Superbends
817(1)
24.1.3 Wavelength Shifter
818(1)
24.1.4 Wiggler Magnet Radiation
819(3)
24.1.5 Undulator Radiation
822(8)
24.2 Radiation Power
830(4)
24.3 Spectrum
834(5)
24.4 Spatial Photon Distribution
839(1)
24.5 Fraunhofer Diffraction
840(3)
24.6 Spatial Coherence
843(3)
24.7 Temporal Coherence
846(2)
24.8 Spectral Brightness
848(3)
24.8.1 Matching
849(2)
24.9 Photon Source Parameters
851(6)
References
854(3)
25 Theory of Synchrotron Radiation
857(38)
25.1 Radiation Field
857(7)
25.2 Total Radiation Power and Energy Loss
864(4)
25.2.1 Transition Radiation
865(3)
25.3 Spatial Radiation Distribution
868(5)
25.3.1 Radiation Lobes
868(5)
25.4 Radiation Field in the Frequency Domain
873(10)
25.4.1 Spectral Distribution in Space and Polarization
877(2)
25.4.2 Spectral and Spatial Photon Flux
879(1)
25.4.3 Harmonic Representation
880(1)
25.4.4 Spatial Radiation Power Distribution
881(2)
25.5 Asymptotic Solutions
883(2)
25.5.1 Low Frequencies and Small Observation Angles
884(1)
25.5.2 High Frequencies or Large Observation Angles
884(1)
25.6 Angle-Integrated Spectrum
885(6)
25.7 Statistical Radiation Parameters
891(4)
References
893(2)
26 Insertion Device Radiation
895(34)
26.1 Particle Dynamics in a Periodic Field Magnet
896(3)
26.2 Undulator Radiation
899(19)
26.2.1 Fundamental Wavelength
899(1)
26.2.2 Radiation Power
900(1)
26.2.3 Spatial and Spectral Distribution
901(13)
26.2.4 Line Spectrum
914(3)
26.2.5 Spectral Undulator Brightness
917(1)
26.3 Elliptical Polarization
918(11)
26.3.1 Elliptical Polarization from Bending Magnet Radiation
918(3)
26.3.2 Elliptical Polarization from Periodic Insertion Devices
921(6)
References
927(2)
27 Free Electron Lasers
929(20)
27.1 Small Gain Regime
930(12)
27.1.1 Energy Transfer
932(2)
27.1.2 Equation of Motion
934(3)
27.1.3 FEL-Gain
937(5)
27.2 High Gain Free Electron Laser
942(7)
27.2.1 Electron Dynamics in a SASE FEL
942(3)
27.2.2 Electron Source
945(1)
27.2.3 Beam Dynamics
945(2)
27.2.4 Undulator
947(1)
References
947(2)
Solutions
949(34)
A Useful Mathematical Formulae
983(10)
A.1 Vector Algebra
983(10)
A.1.1 Differential Vector Expressions
984(1)
A.1.2 Algebraic Relations
984(1)
A.1.3 Differential Relations
985(1)
A.1.4 Partial Integration
985(1)
A.1.5 Trigonometric and Exponential Functions
985(1)
A.1.6 Integral Relations
986(1)
A.1.7 Dirac's Delta Function
986(1)
A.1.8 Bessel's Functions
986(1)
A.1.9 Series Expansions
987(1)
A.1.10 Fourier Series
987(1)
A.1.11 Coordinate Transformations
988(5)
B Physical Formulae and Parameters
993(12)
B.1 Physical Constants
993(1)
B.2 Relations of Fundamental Parameters
994(1)
B.3 Unit Conversions
994(1)
B.4 Maxwell's Equations
995(1)
B.5 Wave and Field Equations
995(1)
B.6 Relativistic Relations
996(2)
B.6.1 Lorentz Transformation
996(1)
B.6.2 Four-Vectors
997(1)
B.6.3 Square of the 4-Acceleration
998(1)
B.6.4 Miscellaneous 4-Vectors and Lorentz Invariant Properties
998(1)
B.7 Transformation Matrices in Beam Dynamics
998(1)
B.8 General Transformation Matrix
999(1)
B.8.1 Symmetric Magnet Arrangement
999(1)
B.8.2 Inverse Transformation Matrix
1000(1)
B.9 Specific Transformation Matrices
1000(5)
B.9.1 Drift Space
1000(1)
B.9.2 Bending Magnets
1000(3)
B.9.3 Quadrupole
1003(2)
Index 1005
Helmut Wiedemann is Professor Emeritus of Applied Physics and of the Stanford Synchrotron Radiation Laboratory. He obtained his PhD from the University of Hamburg in 1971 and worked at DESY before becoming the assistant director of the 18 GeV PEP Storage Ring at SLAC in 1975. In 1980 he became adjunct professor and a full professor of applied physics (photon science) in 1983.

His research interests include developments in theoretical and experimental accelerator physics, particle sources, linear accelerators, storage rings and synchrotron radiation sources, with special interests in developing high brightness light sources at short pulse duration.

Professor Wiedemann is a Fellow of the American Physical Society.