Muutke küpsiste eelistusi

E-raamat: Patch-Based Techniques in Medical Imaging: Second International Workshop, Patch-MI 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Proceedings

Edited by , Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 55,56 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book constitutes the refereed proceedings of the Second International Workshop on Patch-Based Techniques in Medical Images, Patch-MI 2016, which was held in conjunction with MICCAI 2016, in Athens, Greece, in October 2016.





The 17 regular papers presented in this volume were carefully reviewed and selected from 25 submissions.





The main aim of the Patch-MI 2016 workshop is to promote methodological advances within the medical imaging field, with various applications in image segmentation, image denoising, image super-resolution, computer-aided diagnosis, image registration, abnormality detection, and image synthesis.
Automatic Segmentation of Hippocampus for Longitudinal Infant Brain MR
Image Sequence by Spatial-Temporal Hypergraph Learning.- Construction of
Neonatal Diffusion Atlases via Spatio-Angular Consistency.- Selective
Labeling: identifying representative sub-volumes for interactive
segmentation.- Robust and Accurate Appearance Models based on Joint
Dictionary Learning: Data from the Osteoarthritis Initiative.- Consistent
multi-atlas hippocampus segmentation for longitudinal MR brain images with
temporal sparse representation.- Sparse-Based Morphometry: Principle and
Application to Alzheimers Disease.- Multi-Atlas Based Segmentation of
Brainstem Nuclei from MR Images by Deep Hyper-Graph Learning.- Patch-Based
Discrete Registration of Clinical Brain Images.- Non-local MRI Library-based
Super-resolution: Application to Hippocampus Subfield Segmentation.-
Patch-based DTI grading: Application to Alzheimer's disease classification.-
Hierarchical Multi-Atlas Segmentation using Label-SpecificEmbeddings,
Target-Specific Templates and Patch Refinement.- HIST: HyperIntensity
Segmentation Tool.- Supervoxel-Based Hierarchical Markov Random Field
Framework for Multi-Atlas Segmentation.- CapAIBL: Automated reporting of
cortical PET quantification without need of MRI on brain surface using a
patch-based method.- High resolution hippocampus subfield segmentation using
multispectral multi-atlas patch-based label fusion.- Identification of water
and fat images in Dixon MRI using aggregated patch-based convolutional neural
networks.- Estimating Lung Respiratory Motion Using Combined Global and Local
Statistical Models.