Muutke küpsiste eelistusi

E-raamat: Pavement Design: Materials, Analysis, and Highways

  • Formaat: 576 pages
  • Ilmumisaeg: 05-Feb-2021
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781260458923
Teised raamatud teemal:
  • Formaat - EPUB+DRM
  • Hind: 142,27 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: 576 pages
  • Ilmumisaeg: 05-Feb-2021
  • Kirjastus: McGraw-Hill Education
  • Keel: eng
  • ISBN-13: 9781260458923
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Master the principles, analysis, and design in pavement engineering

This student-friendly textbook offers comprehensive coverage of pavement design and highways. Written by two seasoned civil engineering educators, the book contains precise explanations of traditional and computerized mechanistic design methods along with detailed examples of real-world pavement and highway projects. Pavement Design: Materials, Analysis, and Highways shows, step by step, how to apply the latest, software-based AASHTOWare Pavement Mechanistic-Empirical Design method. Each design topic is covered in separate, modular chapters, enabling you to tailor a course of study. Fundamentals of Engineering (FE) sample questions are also provided in each chapter.

Coverage includes:

  • Stress-strain in pavement
  • Soils, aggregates, asphalt, and portland cement concrete
  • Traffic analysis for pavement design
  • Distresses and distress-prediction models in flexible and rigid pavement
  • Flexible and rigid pavement design by AASHTO 1993 and AASHTOWare
  • Overlay and drainage design
  • Sustainable and rehabilitation pavement design, pavement management, and recycling
  • Geometric design of highways


Preface xix
1 Introduction
1(12)
1.1 Background
1(1)
1.2 Pavement Types
2(4)
1.2.1 Flexible Pavements
2(1)
1.2.2 Rigid Pavements
3(3)
1.3 Design Philosophy of Pavements
6(1)
1.4 Major Pavement Design Methods
7(3)
1.4.1 The AASHTO 1993 Pavement Design Guide
7(1)
1.4.2 The AASHTOWare Pavement Mechanistic-Empirical (ME) Design Guide
8(2)
1.4.3 Other Design Methods
10(1)
1.4.4 International Design Methods
10(1)
1.5 Other Design Considerations
10(1)
1.6 Summary
10(1)
1.7 Fundamentals of Engineering (FE) Exam-Style Questions
11(1)
1.8 Practice Problems
11(2)
2 Stress-Strain in Pavement
13(40)
2.1 Background
13(1)
2.2 Stress-Stain in Flexible Pavement
14(13)
2.2.1 Single-Layer Elastic Analysis
15(10)
2.2.2 Two-Layer Elastic Analysis
25(2)
2.2.3 Multilayer Elastic Analysis
27(1)
2.3 Stress-Stain in Rigid Pavement
27(12)
2.3.1 Curling Stress
28(5)
2.3.2 Traffic-Induced Stress
33(4)
2.3.3 Friction-Induced Stress
37(1)
2.3.4 Joint Opening
38(1)
2.4 Stress in Dowels
39(5)
2.5 Finite Element Analysis
44(3)
2.5.1 Background
44(1)
2.5.2 The User's View
44(2)
2.5.3 Pre-Processing
46(1)
2.5.4 Analysis
46(1)
2.5.5 Post-Processing
47(1)
2.6 Numerical Analysis Tools
47(1)
2.7 Summary
47(2)
2.8 Fundamentals of Engineering (FE) Exam-Style Questions
49(1)
2.9 Practice Problems
49(4)
3 Soils and Aggregates
53(38)
3.1 Background
53(1)
3.2 Physical Properties
53(17)
3.2.1 Sieve Analysis
54(6)
3.2.2 Atterberg Limits
60(1)
3.2.3 Soil Classification
61(3)
3.2.4 Proctor Test
64(1)
3.2.5 Flat and Elongated Particles
65(1)
3.2.6 Fine Aggregate Angularity
66(1)
3.2.7 Coarse Aggregate Angularity
67(1)
3.2.8 Clay Content
67(1)
3.2.9 Los Angeles (LA) Abrasion
68(1)
3.2.10 Soundness
69(1)
3.2.11 Deleterious Materials
70(1)
3.3 Mechanical Properties
70(9)
3.3.1 Resilient Modulus
70(2)
3.3.2 Cahfornia Bearing Ratio (CBR) in Laboratory
72(2)
3.3.3 Cahfornia Bearing Ratio (CBR) in Field
74(1)
3.3.4 R-Value
75(1)
3.3.5 Dynamic Cone Penetration (DCP)
76(2)
3.3.6 Resilient Modulus from Soil Physical Testing
78(1)
3.3.7 Resilient/Elastic Modulus of Chemically Stabilized Soil
78(1)
3.4 Resilient Modulus Variations Due to Moisture
79(2)
3.5 Resilient Modulus Variations Due to Stress Level
81(1)
3.6 Other Properties
82(1)
3.7 Summary
82(1)
3.8 Fundamentals of Engineering (FE) Exam-Style Questions
83(3)
3.9 Practice Problems
86(5)
4 Asphalt Materials
91(40)
4.1 Background
91(1)
4.2 Asphalt Binder
91(3)
4.2.1 Asphalt Emulsion
92(1)
4.2.2 Cutback Asphalt
93(1)
4.2.3 Foamed Asphalt
93(1)
4.2.4 Recycled Asphalt
93(1)
4.3 Grading of Asphalt Binder
94(9)
4.3.1 Penetration Grading
94(1)
4.3.2 Viscosity Grading
95(1)
4.3.3 Performance Grading (PG)
96(7)
4.4 Other Tests on Asphalt Binder
103(3)
4.4.1 Absolute Viscosity
103(1)
4.4.2 Kinematic Viscosity
103(1)
4.4.3 Brookfield Viscosity
104(1)
4.4.4 Specific Gravity
105(1)
4.4.5 Ring and Ball Softening Point
106(1)
4.4.6 Flash Point Temperature
106(1)
4.4.7 Ductility
106(1)
4.4.8 Solubility in Trichloroethylene
106(1)
4.5 Asphalt Mixtures
106(3)
4.5.1 Hot-Mix Asphalt (HMA)
106(2)
4.5.2 Warm-Mix Asphalt (WMA)
108(1)
4.5.3 Cold-Mix Asphalt (CMA)
108(1)
4.6 Recycled Asphalt Materials
109(3)
4.6.1 Reclaimed Asphalt Pavement (RAP)
109(1)
4.6.2 Reclaimed Asphalt Shingles (RAS)
110(1)
4.6.3 Rubberized Asphalt Concrete (RAC)
111(1)
4.6.4 Reclaimed Asphalt Pavement (RAP) in Base and Subgrade
111(1)
4.7 Surface Treatment Materials
112(4)
4.7.1 Fog Seal
112(1)
4.7.2 Slurry Seal
112(1)
4.7.3 Chip Seal
113(1)
4.7.4 Microsurfacing
113(2)
4.7.5 Scrub Seal
115(1)
4.7.6 Cape Seal
115(1)
4.7.7 Coats
115(1)
4.8 Characterization of New Asphalt Mixtures
116(10)
4.8.1 Dynamic Modulus
116(3)
4.8.2 Indirect Tensile Strength Test
119(1)
4.8.3 Fatigue Endurance Limit (FEL)
120(3)
4.8.4 Creep Compliance Test
123(1)
4.8.5 Poisson's Ratio Test
123(1)
4.8.6 Miscellaneous Tests
124(2)
4.9 Characterization of Existing Asphalt Mixtures
126(2)
4.10 Summary
128(1)
4.11 Fundamentals of Engineering (FE) Exam-Style Questions
129(1)
4.12 Practice Problems
130(1)
5 Portland Cement Concrete
131(18)
5.1 Background
131(1)
5.2 PCC Characterizations
132(11)
5.2.1 Elastic Modulus and Poisson's Ratio
132(2)
5.2.2 Flexural Strength
134(3)
5.2.3 Indirect Tensile Strength
137(1)
5.2.4 Unit Weight
138(1)
5.2.5 Air Content
138(1)
5.2.6 Other Properties
139(4)
5.3 Chemically Stabilized PCC Materials
143(1)
5.4 Summary
144(2)
5.5 Fundamentals of Engineering (FE) Exam-Style Questions
146(1)
5.6 Practice Problems
147(2)
6 Traffic Analysis for Pavement Design
149(30)
6.1 Background
149(1)
6.2 Fundamentals of Traffic Analysis
149(8)
6.2.1 Tire Imprint Areas
149(3)
6.2.2 Axle Types
152(1)
6.2.3 Counting Traffic and Measuring Axle Load
152(2)
6.2.4 FHWA Vehicle Classifications
154(3)
6.3 Traffic Analysis for the AASHTO 1993 Design
157(8)
6.3.1 Equivalent Single-Axle Load (ESAL)
157(1)
6.3.2 Equivalent Axle Load Factor (EALF)
157(5)
6.3.3 Calculation of Projected Design ESAL
162(3)
6.4 Traffic Analysis for the AASHTOWare Design
165(1)
6.4.1 Traffic Data Summary
165(1)
6.4.2 Developing Traffic Data
166(1)
6.5 Details of Traffic Inputs for the AASHTOWare Design
166(9)
6.5.1 Type 1: Traffic Volume-Base Year Information
166(1)
6.5.2 Type 2: Traffic Volume Adjustment Factors
167(3)
6.5.3 Type 3: Axle Load Distribution Factors
170(1)
6.5.4 Type 4: General Traffic Inputs
171(4)
6.6 Traffic Data Source
175(1)
6.7 Summary
176(1)
6.8 Fundamentals of Engineering (FE) Exam-Style Questions
176(1)
6.9 Practice Problems
177(2)
7 Flexible Pavement Design by AASHTO 1993
179(16)
7.1 Background
179(1)
7.2 AASHTO 1993 Design Equation
179(1)
7.3 Load Repetitions (W18)
180(1)
7.4 Structural Number
181(5)
7.4.1 Definition
181(1)
7.4.2 Layer Coefficient of Asphalt Layer
181(1)
7.4.3 Layer Coefficient of Base Layer
181(3)
7.4.4 Layer Coefficient of Subbase Layer
184(1)
7.4.5 Drainage Coefficients
185(1)
7.5 Effective Roadbed Soil Resilient Modulus
186(2)
7.6 Terminal Serviceability
188(1)
7.7 Reliability
189(1)
7.8 Selection of Layers' Thicknesses
189(3)
7.9 Summary
192(1)
7.10 Fundamentals of Engineering (FE) Exam-Style Questions
192(1)
7.11 Practice Problems
193(2)
8 Distresses in Flexible Pavement
195(20)
8.1 Background
195(1)
8.2 Major Distresses
195(4)
8.2.1 Alligator Cracking
195(1)
8.2.2 Top-Down Longitudinal Cracking
196(1)
8.2.3 Rutting
196(2)
8.2.4 Transverse Cracking
198(1)
8.3 Minor Distresses
199(11)
8.3.1 Stripping
199(1)
8.3.2 Raveling
199(1)
8.3.3 Potholes
200(1)
8.3.4 Bleeding
201(1)
8.3.5 Block Cracking
202(1)
8.3.6 Reflection Cracking
202(1)
8.3.7 Depression
202(2)
8.3.8 Corrugation and Shoving
204(1)
8.3.9 Slippage Cracking
204(1)
8.3.10 Microcracking
205(1)
8.3.11 Water Bleeding and Pumping
206(1)
8.3.12 Polished Aggregate
206(1)
8.3.13 Mat Tearing
206(2)
8.3.14 Nonuniform Texture
208(1)
8.3.15 Miscellaneous Distresses
209(1)
8.4 Summary
210(2)
8.5 Fundamentals of Engineering (FE) Exam-Style Questions
212(1)
8.6 Practice Problems
213(2)
9 Distress Models in Flexible Pavement
215(38)
9.1 Background
215(2)
9.2 Alligator Cracking
217(10)
9.3 Top-Down Longitudinal Cracking
227(4)
9.4 Rutting
231(4)
9.5 Transverse Cracking
235(2)
9.6 International Roughness Index
237(3)
9.7 Reflective Cracking in HMA Overlay
240(2)
9.8 Recommended Design-Performance Criteria
242(1)
9.9 Reliability
243(1)
9.10 Calibration of Local Calibration Coefficients
244(1)
9.11 Summary
245(3)
9.12 Fundamentals of Engineering (FE) Exam-Style Questions
248(1)
9.13 Practice Problems
249(4)
10 Flexible Pavement Design by AASHTOWare
253(20)
10.1 Background
253(1)
10.2 AASHTOWare Design Considerations
253(4)
10.2.1 Starting the Design
253(1)
10.2.2 Materials and Layers
253(1)
10.2.3 Presence of Rigid Layer
254(1)
10.2.4 Presence of Water Table
254(1)
10.2.5 Drainage System
254(1)
10.2.6 Soil Stabilization
255(1)
10.2.7 Base/Subbase
255(1)
10.2.8 Initial IRI
255(1)
10.2.9 Traffic Data
255(1)
10.2.10 Climate Data
256(1)
10.2.11 Analysis Procedure
256(1)
10.3 AASHTOWare Input Hierarchy
257(1)
10.4 Getting Started with the AASHTOWare Pavement ME Design Software
257(8)
10.5 Interpretation and Analysis of the Trial Design
265(2)
10.6 Special Features of the Software
267(2)
10.6.1 Thickness Optimization
267(1)
10.6.2 Batch Run
267(1)
10.6.3 Structural Response
267(1)
10.6.4 Calibration Factors
268(1)
10.7 Summary
269(1)
10.8 Fundamentals of Engineering (FE) Exam-Style Questions
269(1)
10.9 Practice Problems
270(3)
11 Asphalt Overlay Design by AASHTOWare
273(6)
11.1 Background
273(1)
11.2 AASHTOWare Design Method
274(1)
11.3 Overlay Design Using the AASHTOWare Software
274(3)
11.4 Summary
277(1)
11.5 Fundamentals of Engineering (FE) Exam-Style Questions
277(1)
11.6 Practice Problems
278(1)
12 Rigid Pavement Design by AASHTO 1993
279(18)
12.1 Background
279(1)
12.2 AASHTO Thickness Design
279(3)
12.3 Design Inputs
282(9)
12.3.1 Effective Modulus of Subgrade Reaction
282(2)
12.3.2 Concrete Properties
284(1)
12.3.3 Drainage
285(2)
12.3.4 Load Transfer Coefficient
287(1)
12.3.5 Reliability
287(1)
12.3.6 Change in Present Serviceability Index (APSI)
287(4)
12.4 Thickness Design
291(3)
12.5 Summary
294(1)
12.6 Fundamentals of Engineering (FE) Exam-Style Questions
294(1)
12.7 Practice Problems
294(3)
13 Distresses in Rigid Pavement
297(10)
13.1 Background
297(1)
13.2 Major Distresses
297(2)
13.2.1 Transverse Slab Cracking in Jointed Plain Concrete Pavement (JPCP)
297(1)
13.2.2 Transverse Joint Faulting in JPCP
297(1)
13.2.3 Punchouts in Continuously Reinforced Concrete Pavement (CRCP)
297(2)
13.2.4 Smoothness in JPCP and CRCP
299(1)
13.3 Selected Minor Distresses
299(6)
13.3.1 Spalling
299(1)
13.3.2 Polished Aggregates
299(2)
13.3.3 Shrinkage Cracking
301(1)
13.3.4 Linear Cracking
301(1)
13.3.5 Corner Break
302(1)
13.3.6 Blowup
302(1)
13.3.7 Pumping/Water Bleeding
302(2)
13.3.8 Other Minor Cracks
304(1)
13.4 Summary
305(1)
13.5 Fundamentals of Engineering (FE) Exam-Style Questions
306(1)
13.6 Practice Problems
306(1)
14 Distress Models in Rigid Pavement
307(20)
14.1 Background
307(1)
14.2 Jointed Plain Concrete Pavement
307(12)
14.2.1 Transverse Slab Cracking (Bottom-Up and Top-Down)--JPCP
307(4)
14.2.2 Mean Transverse Joint Faulting--JPCP
311(5)
14.2.3 Smoothness--JPCP
316(3)
14.3 Continuously Reinforced Concrete Pavement
319(4)
14.3.1 CRCP Punchouts
319(1)
14.3.2 Smoothness--CRCP
320(3)
14.4 Recommended Design-Performance Criteria
323(1)
14.5 Summary
324(1)
14.6 Fundamentals of Engineering (FE) Exam-Style Questions
324(1)
14.7 Practice Problems
325(2)
15 Rigid Pavement Design by AASHTOWare
327(18)
15.1 Background
327(1)
15.2 Pavement Structure
328(1)
15.3 JPCP Design
328(1)
15.4 CRCP Design
329(2)
15.5 Usage of the Software
331(8)
15.5.1 Jointed Plain Concrete Pavement
331(5)
15.5.2 Continuously Reinforced Concrete Pavement
336(3)
15.6 Interpretation and Analysis of the Trial Design
339(1)
15.7 Summary
340(1)
15.8 Fundamentals of Engineering (FE) Exam-Style Questions
340(1)
15.9 Practice Problems
341(4)
16 Drainage Design in Pavement
345(44)
16.1 Background
345(1)
16.2 Surface Drainage
345(21)
16.2.1 Transverse Slopes
345(2)
16.2.2 Longitudinal Slopes and Channels
347(1)
16.2.3 Curbs and Gutters
347(1)
16.2.4 Calculating the Runoffs by Rational Method
347(8)
16.2.5 Calculating the Runoffs by U.S. Soil Conservation Service (SCS) Method
355(8)
16.2.6 Designing of Open Channel
363(3)
16.3 Subsurface Drainage
366(18)
16.3.1 Drainage Geometry and Permeability
366(1)
16.3.2 Computation of Subsurface Water
367(9)
16.3.3 Thickness Design of Permeable Base
376(1)
16.3.4 Materials Requirements for Permeable Base
377(1)
16.3.5 Design of Separator Layer
378(3)
16.3.6 Design of Longitudinal Collector Pipes
381(2)
16.3.7 DRIP Software
383(1)
16.4 Summary
384(1)
16.5 Fundamentals of Engineering (FE) Exam-Style Questions
385(1)
16.6 Practice Problems
385(4)
17 Sustainable Pavement Design
389(14)
17.1 Concept of Sustainability
389(1)
17.2 Role of Pavement in Sustainability
389(1)
17.3 Pavement Life Cycle
390(1)
17.4 Materials Considerations for Sustainability
391(2)
17.4.1 Aggregates
391(1)
17.4.2 Asphaltic Materials
391(1)
17.4.3 Concrete Materials
392(1)
17.4.4 Other Materials
392(1)
17.5 Rehabihtation Design for Sustainability
393(2)
17.6 Construction Considerations for Sustainability
395(1)
17.7 Maintenance for Sustainability
395(1)
17.8 End-of-Life Considerations for Sustainability
396(2)
17.8.1 Asphalt Pavement
396(1)
17.8.2 Concrete Pavement
397(1)
17.9 Measuring Pavement Sustainability
398(2)
17.9.1 Performance Assessment
398(1)
17.9.2 Life-Cycle Cost Analysis
399(1)
17.9.3 Life-Cycle Assessment
400(1)
17.9.4 Rating System
400(1)
17.10 Summary
400(1)
17.11 Fundamentals of Engineering (FE) Exam-Style Questions
401(1)
17.12 Practice Problems
402(1)
18 Pavement Rehabilitation Design
403(16)
18.1 Background
403(2)
18.2 Overall Condition Assessment
405(1)
18.3 Fully Defining Condition Assessment
405(2)
18.4 Analysis of Pavement Evaluation Data
407(1)
18.5 General Overview of Rehabilitation Design Using AASHTOWare
407(1)
18.6 Rehabilitation Design with HMA Overlays
408(7)
18.7 Rehabilitation Design with PCC Overlays
415(1)
18.8 Summary
416(1)
18.9 Fundamentals of Engineering (FE) Exam-Style Questions
416(1)
18.10 Practice Problems
417(2)
19 Geometric Design of Highways
419(62)
19.1 Background
419(1)
19.2 Cross Section of Highways
419(1)
19.3 Lane Widths
420(1)
19.4 Shoulders
421(1)
19.5 Rumble Strips
421(1)
19.6 Curbs
422(1)
19.7 Drainage Channels
422(1)
19.8 Sideslopes
423(1)
19.9 Traffic Barriers
424(2)
19.9.1 Longitudinal Barriers
424(1)
19.9.2 Bridge Railings
425(1)
19.9.3 Crash Cushions
425(1)
19.10 Medians
426(1)
19.11 Pedestrian Facilities
427(1)
19.11.1 Sidewalks
427(1)
19.11.2 Grade-Separated Pedestrian Crossings
427(1)
19.11.3 Curb Ramps
427(1)
19.12 Bicycle Facilities
428(1)
19.13 On-Street Parking
429(1)
19.14 Horizontal Curves
430(21)
19.14.1 Types of Horizontal Curves
431(1)
19.14.2 Simple Curve
431(1)
19.14.3 Simple Curve Formulas
432(4)
19.14.4 Design of Simple Curve
436(1)
19.14.5 Design Parameters
437(2)
19.14.6 Sight Distance on Horizontal Curves
439(2)
19.14.7 Setting Simple Curve
441(7)
19.14.8 Spiral Curves
448(3)
19.14.9 General Controls for Horizontal Alignment
451(1)
19.15 Vertical Curves
451(22)
19.15.1 Background
451(1)
19.15.2 Equation of an Equal Tangent Vertical Curve
452(5)
19.15.3 Sight Distances Related to Crest Vertical Curve
457(5)
19.15.4 Sight Distances Related to Sag Vertical Curve
462(3)
19.15.5 Sight Distances Related to Sag Vertical Curve at Undercrossing
465(3)
19.15.6 Setting Vertical Curve
468(4)
19.15.7 General Controls for Vertical Alignment
472(1)
19.16 Other Features Affecting Geometric Design
473(1)
19.16.1 Erosion Control and Landscape Development
473(1)
19.16.2 Rest Areas, Information Centers, and Scenic Overlooks
473(1)
19.16.3 Lighting
473(1)
19.16.4 Utilities
473(1)
19.17 Summary
474(1)
19.18 Fundamentals of Engineering (FE) Exam-Style Questions
474(2)
19.19 Practice Problems
476(5)
A Global Contexts of Pavement Design
481(8)
A.1 Background
481(1)
A.2 U.K. Flexible Pavement Design
481(2)
A.2.1 Materials
481(1)
A.2.2 Traffic
482(1)
A.2.3 Thickness Design
483(1)
A.3 U.K. Rigid Pavement Design
483(1)
A.4 Australian Flexible Pavement Design
484(2)
A.5 Australian Rigid Pavement Design
486(1)
A.6 South African Flexible Pavement Design
486(1)
A.7 Summary
487(2)
B Pavement Management System
489(12)
B.1 General
489(1)
B.2 Inventory Data Collection
490(1)
B.3 Pavement Condition Assessment
490(4)
B.3.1 Distress Measurements
491(3)
B.3.2 Developing Pavement Condition Indices
494(1)
B.4 Pavement Performance Modeling
494(1)
B.4.1 Performance Modeling Approaches
494(1)
B.4.2 Family Modeling
494(1)
B.4.3 Site-Specific Modeling
495(1)
B.5 Treatment Selection
495(3)
B.5.1 Identifying Treatment Needs
495(2)
B.5.2 Techniques for Treatment Selection
497(1)
B.6 Presenting Pavement Management Results
498(1)
B.7 Implementation
499(1)
B.8 Future Directions
499(1)
B.9 Summary
499(2)
C Recycling and Rehabilitation of Pavement
501(14)
C.1 General
501(1)
C.2 Asphalt Pavement Recycling
502(8)
C.2.1 General
502(1)
C.2.2 Asphalt Recycling Types
502(1)
C.2.3 Hot Recycling
503(1)
C.2.4 Hot In-Place Recycling
503(3)
C.2.5 Cold Planing
506(1)
C.2.6 Full-Depth Reclamation
506(2)
C.2.7 Cold Recycling
508(1)
C.2.8 Summary of Rehabilitation Techniques
509(1)
C.3 Concrete Pavement Recycling
510(4)
C.3.1 General
510(1)
C.3.2 Production of RCA
510(2)
C.3.3 Properties of RCA
512(1)
C.3.4 Properties of Concrete with RCA
512(2)
C.3.5 Uses of RCA
514(1)
C.3.6 Considerations for Mix Design Using RCA
514(1)
C.4 Summary
514(1)
D Superpave Asphalt Mix Design
515(14)
D.1 Background
515(1)
D.2 Superpave Mix Design
516(12)
D.3 Summary
528(1)
References 529(8)
Index 537