Muutke küpsiste eelistusi

E-raamat: Two-Phase Flow, Boiling, and Condensation: In Conventional and Miniature Systems

(Georgia Institute of Technology)
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 11-Jan-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316784341
  • Formaat - EPUB+DRM
  • Hind: 123,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: EPUB+DRM
  • Ilmumisaeg: 11-Jan-2017
  • Kirjastus: Cambridge University Press
  • Keel: eng
  • ISBN-13: 9781316784341

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Providing a comprehensive introduction to the fundamentals and applications of flow and heat transfer in conventional and miniature systems, this fully enhanced and updated edition covers all the topics essential for graduate courses on two-phase flow, boiling, and condensation. Beginning with a concise review of single-phase flow fundamentals and interfacial phenomena, detailed and clear discussion is provided on a range of topics, including two-phase hydrodynamics and flow regimes, mathematical modeling of gas-liquid two-phase flows, pool and flow boiling, flow and boiling in mini and microchannels, external and internal-flow condensation with and without noncondensables, condensation in small flow passages, and two-phase choked flow. Numerous solved examples and end-of-chapter problems that include many common design problems likely to be encountered by students, make this an essential text for graduate students. With up-to-date detail on the most recent research trends and practical applications, it is also an ideal reference for professionals and researchers in mechanical, nuclear, and chemical engineering.

Muu info

A graduate-level text on the fundamentals of flow and heat transfer, with end-of-chapter problems, recent research trends and applications.
Preface to the Second Edition xv
Preface to the First Edition xvii
Frequently Used Notation xix
PART ONE TWO-PHASE FLOW
1 Thermodynamic and Single-Phase Flow Fundamentals
3(35)
1.1 States of Matter and Phase Diagrams for Pure Substances
3(4)
1.1.1 Equilibrium States
3(2)
1.1.2 Metastable States
5(2)
1.2 Transport Equations and Closure Relations
7(3)
1.3 Single-Phase Multicomponent Mixtures
10(5)
1.4 Phase Diagrams for Binary Systems
15(2)
1.5 Thermodynamic Properties of Vapor--Noncondensable Gas Mixtures
17(4)
1.6 Transport Properties
21(6)
1.6.1 Mixture Rules
21(1)
1.6.2 Gaskinetic Theory
21(4)
1.6.3 Diffusion in Liquids
25(2)
1.7 Turbulent Boundary Layer Velocity and Temperature Profiles
27(4)
1.8 Convective Heat and Mass Transfer
31(7)
Problems
36(2)
2 Gas--Liquid Interfacial Phenomena
38(58)
2.1 Surface Tension and Contact Angle
38(6)
2.1.1 Surface Tension
38(3)
2.1.2 Contact Angle
41(1)
2.1.3 Dynamic Contact Angle and Contact Angle Hysteresis
42(1)
2.1.4 Surface Tension Nonuniformity
43(1)
2.2 Effect of Surface-Active Impurities on Surface Tension
44(2)
2.3 Thermocapillary Effect
46(4)
2.4 Disjoining Pressure in Thin Films
50(1)
2.5 Liquid--Vapor Interphase at Equilibrium
51(2)
2.6 Attributes of Interfacial Mass Transfer
53(8)
2.6.1 Evaporation and Condensation
53(6)
2.6.2 Sparingly Soluble Gases
59(2)
2.7 Semi-Empirical Treatment of Interfacial Transfer Processes
61(5)
2.8 Multicomponent Mixtures
66(5)
2.9 Interfacial Waves and the Linear Stability Analysis Method
71(1)
2.10 Two-Dimensional Surface Waves on the Surface of an Inviscid and Quiescent Liquid
72(3)
2.11 Rayleigh--Taylor and Kelvin--Helmholtz Instabilities
75(6)
2.12 Rayleigh--Taylor Instability for a Viscous Liquid
81(2)
2.13 Waves at the Surface of Small Bubbles and Droplets
83(4)
2.14 Growth of a Vapor Bubble in Superheated Liquid
87(9)
Problems
90(6)
3 Two-Phase Mixtures, Fluid Dispersions, and Liquid Films
96(39)
3.1 Introductory Remarks about Two-Phase Mixtures
96(1)
3.2 Time, Volume, and Composite Averaging
97(3)
3.2.1 Phase Volume Fractions
97(2)
3.2.2 Averaged Properties
99(1)
3.3 Flow-Area Averaging
100(1)
3.4 Some Important Definitions for Two-Phase Mixture Flows
101(3)
3.4.1 General Definitions
101(1)
3.4.2 Definitions for Flow-Area-Averaged One-Dimensional Flow
102(2)
3.4.3 Homogeneous-Equilibrium Flow
104(1)
3.5 Convention for the Remainder of This Book
104(2)
3.6 Particles of One Phase Dispersed in a Turbulent Flow Field of Another Phase
106(8)
3.6.1 Turbulent Eddies and Their Interaction with Suspended Fluid Particles
106(5)
3.6.2 The Population Balance Equation
111(1)
3.6.3 Coalescence
112(1)
3.6.4 Breakup
113(1)
3.7 Conventional, Mini-, and Microchannels
114(8)
3.7.1 Basic Phenomena and Size Classification for Single-Phase Flow
114(4)
3.7.2 Size Classification for Two-Phase Flow
118(4)
3.8 Falling Liquid Films
122(5)
3.8.1 Laminar Falling Liquid Films
123(3)
3.8.2 Turbulent Falling Liquid Films
126(1)
3.9 Heat Transfer Correlations for Falling Liquid Films
127(2)
3.10 Mechanistic Modeling of Liquid Films
129(6)
Problems
131(4)
4 Two-Phase Flow Regimes -- I
135(27)
4.1 Introductory Remarks
135(1)
4.2 Two-Phase Flow Regimes in Adiabatic Pipe Flow
136(7)
4.2.1 Vertical, Co-current, Upward Flow
136(3)
4.2.2 Co-current Horizontal Flow
139(4)
4.3 Flow Regime Maps for Pipe Flow
143(2)
4.4 Two-Phase Flow Regimes in Rod Bundles
145(4)
4.5 Two-Phase Flow in Curved Passages
149(9)
4.6 Comments on Empirical Flow Regime Maps
158(4)
Problems
159(3)
5 Two-Phase Flow Modeling
162(37)
5.1 General Remarks
162(1)
5.2 Local Instantaneous Equations and Interphase Balance Relations
163(3)
5.3 Two-Phase Flow Models
166(1)
5.4 Flow-Area Averaging
167(2)
5.5 One-Dimensional Homogeneous-Equilibrium Model: Single-Component Fluid
169(5)
5.6 One-Dimensional Homogeneous-Equilibrium Model: Two-Component Mixture
174(1)
5.7 One-Dimensional Separated-Flow Model: Single-Component Fluid
175(9)
5.8 One-Dimensional Separated-Flow Model: Two-Component Fluid
184(1)
5.9 Multi-dimensional Two-Fluid Model
185(3)
5.10 Numerical Solution of Steady, One-Dimensional Conservation Equations
188(11)
5.10.1 Casting the One-Dimensional ODE Model Equations in a Standard Form
189(6)
5.10.2 Numerical Solution of the ODEs
195(1)
Problems
195(4)
6 The Drift Flux Model and Void-Quality Relations
199(22)
6.1 The Concept of Drift Flux
199(3)
6.2 Two-Phase Flow Model Equations Based on the DFM
202(1)
6.3 DFM Parameters for Pipe Flow
203(7)
6.4 DFM Parameters for Rod Bundles
210(2)
6.5 DFM in Minichannels
212(1)
6.6 Void-Quality Correlations
213(8)
Problems
218(3)
7 Two-Phase Flow Regimes -- II
221(25)
7.1 Introductory Remarks
221(1)
7.2 Upward, Co-current Flow in Vertical Tubes
221(7)
7.2.1 Flow Regime Transition Models of Taitel et al.
221(4)
7.2.2 Flow Regime Transition Models of Mishima and Ishii
225(3)
7.3 Co-current Flow in a Near-Horizontal Tube
228(4)
7.4 Two-Phase Flow in an Inclined Tube
232(2)
7.5 Dynamic Flow Regime Models and Interfacial Surface Area Transport Equations
234(12)
7.5.1 The Interfacial Area Transport Equation
235(1)
7.5.2 Simplification of the Interfacial Area Transport Equation
236(2)
7.5.3 Two-Group Interfacial Area Transport Equations
238(4)
Problems
242(4)
8 Pressure Drop in Two-Phase Flow
246(39)
8.1 Introduction
246(1)
8.2 Two-Phase Frictional Pressure Drop in Homogeneous Flow and the Concept of a Two-Phase Multiplier
247(3)
8.3 Empirical Two-Phase Frictional Pressure Drop Methods
250(6)
8.4 General Remarks about Local Pressure Drops
256(2)
8.5 Single-Phase Flow Pressure Drops Caused by Flow Disturbances
258(4)
8.5.1 Single-Phase Flow Pressure Drop across a Sudden Expansion
260(1)
8.5.2 Single-Phase Flow Pressure Drop across a Sudden Contraction
261(1)
8.5.3 Pressure Change Caused by Other Flow Disturbances
262(1)
8.6 Two-Phase Flow Local Pressure Drops
262(8)
8.7 Pressure Drop in Helical Flow Passages
270(15)
8.7.1 Hydrodynamics of Single-Phase Flow
270(4)
8.7.2 Frictional Pressure Drop in Two-Phase Flow
274(3)
Problems
277(8)
9 Countercurrent Flow Limitation
285(21)
9.1 General Description
285(5)
9.2 Flooding Correlations for Vertical Flow Passages
290(3)
9.3 Flooding in Horizontal, Perforated Plates and Porous Media
293(3)
9.4 Flooding in Vertical Annular or Rectangular Passages
296(3)
9.5 Flooding Correlations for Horizontal and Inclined Flow Passages
299(1)
9.6 Effect of Phase Change on CCFL
300(1)
9.7 Modeling of CCFL Based on the Separated-Flow Momentum Equations
300(6)
Problems
302(4)
10 Two-Phase Flow in Small Flow Passages
306(51)
10.1 Two-Phase Flow Regimes in Minichannels
307(7)
10.2 Void Fraction in Minichannels
314(2)
10.3 Two-Phase Flow Regimes and Void Fraction in Microchannels
316(3)
10.4 Two-Phase Flow and Void Fraction in Thin Rectangular Channels and Annuli
319(5)
10.4.1 Flow Regimes in Vertical and Inclined Channels
320(2)
10.4.2 Flow Regimes in Rectangular Channels and Annuli
322(2)
10.5 Two-Phase Pressure Drop
324(7)
10.6 Semitheoretical Models for Pressure Drop in the Intermittent Flow Regime
331(3)
10.7 Ideal, Laminar Annular Flow
334(1)
10.8 The Bubble Train (Taylor Flow) Regime
335(12)
10.8.1 General Remarks
335(6)
10.8.2 Some Useful Correlations
341(6)
10.9 Pressure Drop Caused by Flow-Area Changes
347(10)
Problems
348(9)
PART TWO BOILING AND CONDENSATION
11 Pool Boiling
357(47)
11.1 The Pool Boiling Curve
357(4)
11.2 Heterogeneous Bubble Nucleation and Ebullition
361(9)
11.2.1 Heterogeneous Bubble Nucleation and Active Nucleation Sites
361(5)
11.2.2 Bubble Ebullition
366(3)
11.2.3 Heat Transfer Mechanisms in Nucleate Boiling
369(1)
11.3 Nucleate Boiling Correlations
370(6)
11.4 The Hydrodynamic Theory of Boiling and Critical Heat Flux
376(3)
11.5 Film Boiling
379(7)
11.5.1 Film Boiling on a Horizontal, Flat Surface
379(3)
11.5.2 Film Boiling on a Vertical, Flat Surface
382(3)
11.5.3 Film Boiling on Horizontal Tubes
385(1)
11.5.4 The Effect of Thermal Radiation in Film Boiling
385(1)
11.6 Minimum Film Boiling
386(2)
11.7 Transition Boiling
388(1)
11.8 Pool Boiling in Binary Liquid Mixtures
389(15)
11.8.1 Nucleate Boiling Process
390(2)
11.8.2 Nucleate Boiling Heat Transfer Correlations
392(4)
11.8.3 Critical Heat Flux
396(4)
Problems
400(4)
12 Flow Boiling
404(68)
12.1 Forced-Flow Boiling Regimes
404(6)
12.2 Flow Boiling Curves
410(2)
12.3 Flow Patterns and Temperature Variation in Subcooled Boiling
412(1)
12.4 Onset of Nucleate Boiling
413(6)
12.5 Empirical Correlations for the Onset of Significant Void
419(1)
12.6 Mechanistic Models for Hydrodynamically Controlled Onset of Significant Void
419(4)
12.7 Transition from Partial Boiling to Fully Developed Subcooled Boiling
423(1)
12.8 Hydrodynamics of Subcooled Flow Boiling
424(5)
12.9 Pressure Drop in Subcooled Flow Boiling
429(1)
12.10 Partial Flow Boiling
429(1)
12.11 Fully Developed Subcooled Flow Boiling Heat Transfer Correlations
430(1)
12.12 Characteristics of Saturated Flow Boiling
431(1)
12.13 Saturated Flow Boiling Heat Transfer Correlations
432(8)
12.14 Flow-Regime-Dependent Correlations for Saturated Boiling in Horizontal Channels
440(4)
12.15 Two-Phase Flow Instability
444(5)
12.15.1 Static Instabilities
445(2)
12.15.2 Dynamic Instabilities
447(2)
12.16 Flow Boiling in Binary Liquid Mixtures
449(4)
12.17 Flow Boiling in Helically Coiled Flow Passages
453(19)
Problems
463(9)
13 Critical Heat Flux and Post-CHF Heat Transfer in Flow Boiling
472(37)
13.1 Critical Heat Flux Mechanisms
472(3)
13.2 Experiments and Parametric Trends
475(4)
13.3 Correlations for Upward Flow in Vertical Channels
479(9)
13.4 Correlations for Subcooled Upward Flow of Water in Vertical Channels
488(2)
13.5 Mechanistic Models for DNB
490(3)
13.6 Mechanistic Models for Dryout
493(2)
13.7 CHF in Inclined and Horizontal Systems
495(5)
13.8 Post-Critical Heat Flux Heat Transfer
500(4)
13.9 Critical Heat Flux in Binary Liquid Mixtures
504(5)
Problems
505(4)
14 Flow Boiling and CHF in Small Passages
509(51)
14.1 Mini- and Microchannel-Based Cooling Systems
509(3)
14.2 Boiling Two-Phase Flow Patterns and Flow Instability
512(14)
14.2.1 Flow Regimes in Minichannels with Stable Flow Rates
512(10)
14.2.2 Flow Phenomena in Arrays of Parallel Channels
522(4)
14.3 Onset of Nucleate Boiling and Onset of Significant Void
526(5)
14.3.1 ONB and OSV in Channels with Hard Inlet Conditions
526(2)
14.3.2 Boiling Initiation and Evolution in Arrays of Parallel Mini- and Microchannels
528(3)
14.4 Boiling Heat Transfer
531(14)
14.4.1 Background and Experimental Data
531(1)
14.4.2 Boiling Heat Transfer Mechanisms
532(4)
14.4.3 Flow Boiling Correlations
536(9)
14.5 Critical Heat Flux in Small Channels
545(15)
14.5.1 General Remarks and Parametric Trends in the Available Data
545(4)
14.5.2 Models and Correlations
549(7)
Problems
556(4)
15 Fundamentals of Condensation
560(30)
15.1 Basic Processes in Condensation
560(3)
15.2 Thermal Resistances in Condensation
563(2)
15.3 Laminar Condensation on Isothermal, Vertical, and Inclined Flat Surfaces
565(6)
15.4 Empirical Correlations for Wavy-Laminar and Turbulent Film Condensation on Vertical Flat Surfaces
571(2)
15.5 Interfacial Shear
573(1)
15.6 Laminar Film Condensation on Horizontal Tubes
574(4)
15.7 Condensation in the Presence of a Noncondensable
578(4)
15.8 Fog Formation
582(1)
15.9 Condensation of Binary Fluids
583(7)
Problems
587(3)
16 Internal-Flow Condensation and Condensation on Liquid Jets and Droplets
590(53)
16.1 Introduction
590(1)
16.2 Two-Phase Flow Regimes
591(5)
16.3 Condensation Heat Transfer Correlations for a Pure Saturated Vapor
596(12)
16.3.1 Correlations for Vertical, Downward Flow
597(2)
16.3.2 Correlations for Horizontal Flow
599(4)
16.3.3 Semi-Analytical Models for Horizontal Flow
603(5)
16.4 Effect of Noncondensables on Condensation Heat Transfer
608(1)
16.5 Direct-Contact Condensation
609(5)
16.6 Mechanistic Models for Condensing Annular Flow
614(5)
16.7 Flow Condensation in Small Channels
619(4)
16.8 Condensation Flow Regimes and Pressure Drop in Small Channels
623(4)
16.8.1 Flow Regimes in Minichannels
623(2)
16.8.2 Flow Regimes in Microchannels
625(1)
16.8.3 Pressure Drop in Condensing Two-Phase Flows
625(2)
16.9 Flow Condensation Heat Transfer in Small Channels
627(4)
16.10 Condensation in Helical Flow Passages
631(3)
16.11 Internal Flow Condensation of Binary Vapor Mixtures
634(9)
Problems
638(5)
17 Choking in Two-Phase Flow
643(35)
17.1 Physics of Choking
643(1)
17.2 Velocity of Sound in Single-Phase Fluids
644(1)
17.3 Critical Discharge Rate in Single-Phase Flow
645(2)
17.4 Choking in Homogeneous Two-Phase Flow
647(1)
17.5 Choking in Two-Phase Flow with Interphase Slip
648(1)
17.6 Critical Two-Phase Flow Models
649(7)
17.6.1 The Homogeneous-Equilibrium Isentropic Model
649(2)
17.6.2 Critical Flow Model of Moody
651(2)
17.6.3 Critical Flow Model of Henry and Fauske
653(3)
17.7 RETRAN Curve Fits for Critical Discharge of Water and Steam
656(2)
17.8 The Omega Parameter Methods
658(9)
17.9 Choked Two-Phase Flow in Small Passages
667(5)
17.10 Nonequilibrium Mechanistic Modeling of Choked Two-Phase Flow
672(6)
Problems
674(4)
Appendix A Thermodynamic Properties of Saturated Water and Steam 678(1)
Appendix B Transport Properties of Saturated Water and Steam 679(2)
Appendix C Thermodynamic Properties of Saturated Liquid and Vapor for Selected Refrigerants 681(9)
Appendix D Properties of Selected Ideal Gases at 1 Atmosphere 690(5)
Appendix E Binary Diffusion Coefficients of Selected Gases in Air at 1 Atmosphere 695(1)
Appendix F Henry's Constant of Dilute Aqueous Solutions of Selected Substances at 298.16 K Temperature and Moderate Pressures 696(1)
Appendix G Diffusion Coefficients of Selected Substances in Water at Infinite Dilution at 25°C 697(1)
Appendix H Lennard-Jones (6--12) Potential Model Constants for Selected Molecules 698(1)
Appendix I Collision Integrals for the Lennard-Jones (6--12) Potential Model 699(1)
Appendix J Physical Constants 700(1)
Appendix K Unit Conversions 701(3)
References 704(55)
Index 759
S. Mostafa Ghiaasiaan is a Professor in the George W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology. Before joining the faculty in 1991, Professor Ghiaasiaan worked in the Aerospace and Nuclear Power industry for eight years, conducting research and development activity on modeling and simulation of transport processes, multi-phase flow, and nuclear reactor thermal-hydraulics and safety. Professor Ghiaasiaan has more than 200 publications on transport phenomena and multiphase flow, is a fellow of the American Society of Mechanical Engineers (ASME), and has been an Executive Editor for Annals of Nuclear Energy since 2006. He is also the author of the widely used graduate text Convective Heat and Mass Transfer (Cambridge, 2011).