Muutke küpsiste eelistusi

E-raamat: A Practical Approach to Medical Image Processing

(Elizabeth Berry Ltd, Leeds, UK)
  • Formaat - PDF+DRM
  • Hind: 62,39 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

The ability to manipulate and analyze pictorial information to improve medical diagnosis, monitoring, and therapy via imaging is a valuable tool that every professional working in radiography, medical imaging, and medical physics should utilize. However, previous texts on the subject have only approached the subject from a programming or computer science viewpoint at a mathematically inaccessible level. Unlike these previous publications, A Practical Approach to Medical Imaging Processing provides hands-on instruction, using the freely available software program ImageJ, on all of the skills needed to perform filtering and image enhancement techniques used in structured image discrimination.

In this unique text, the author focuses exclusively on image processing and treats medical images in a generic way to highlight the features that all digital images have in common. The book first introduces the main topics in image processing and as it progresses, you will discover relevant points of good practice. The author validates each technique with a corresponding case study, which originates from a published journal article. The case studies demonstrate how the concepts of image processing are applied to real-life situations, such as how to uncover information suffering from distortion and pixel-size limitations. The accompanying downloadable resources contain the Windows version of the ImageJ software, digital images, and documents to be used during the practical activities included in each chapter.

With its highly functional workbook approach, A Practical Approach to Medical Image Processing allows you to build your skills in image manipulation and to enjoy the benefits of this valuable field without having to code or develop your own program.
Preface xi
Acknowledgments xiii
On the CD xv
1 Image Processing Basics
1
1.1 Introduction
1
1.2 Definition of Image Processing
2
1.3 Introduction to ImageJ
10
1.4 Grayscale Image Processing Basics
13
1.5 Spatial Image Processing Basics
30
1.6 The Five Classes of Image Processing
32
1.7 Good Practice Considerations
34
1.8
Chapter Summary
35
1.9 Feedback on the Self-Assessment Questions
35
Reference
38
2 Segmentation and Classification
39
2.1 Introduction
39
2.2 Segmentation
40
2.3 Classification
49
2.4 Good Practice Considerations
57
2.5
Chapter Summary
57
2.6 Feedback on the Self-Assessment Questions
57
References
59
3 Spatial Domain Filtering
61
3.1 Introduction
61
3.2 Spatial Filtering Operations
62
3.3 Adaptive Filtering
74
3.4 Good Practice Considerations
74
3.5
Chapter Summary
75
3.6 Feedback on the Self-Assessment Questions
75
References
76
4 Frequency Domain Filtering
77
4.1 Introduction
77
4.2 The Spatial Domain and the Frequency Domain
78
4.3 Frequency Domain Filtering
80
4.4 Good Practice Considerations
95
4.5
Chapter Summary
96
4.6 Feedback on the Self-Assessment Questions
96
Reference
100
5 Image Analysis Operations
101
5.1 Introduction
101
5.2 Image Arithmetic
102
5.3 Binary Image Operations
112
5.5 Good Practice Considerations
118
5.6
Chapter Summary
118
5.7 Feedback on Self-Assessment Questions
119
6 Image Data Formats and Image Compression
121
6.1 Introduction
121
6.2 Image Data Formats
122
6.3 Image Compression
130
6.4 Good Practice Considerations
137
6.5
Chapter Summary
137
6.6 Feedback on Self-Assessment Questions
138
References
139
7 Image Restoration
141
7.1 Introduction
141
7.2 Blurring Arising from the Imaging System Itself
142
7.3 Geometrical Distortion
148
7.4 Gray-Level Inhomogeneity
151
7.5 Good Practice Considerations
156
7.6
Chapter Summary
156
7.7 Feedback on Self-Assessment Questions
156
References
159
8 Image Registration
161
8.1 Introduction
161
8.2 Image Registration
162
8.3 Dimensionality and Number of Modalities
176
8.4 Visualization of Registered Images
177
8.5 Applications
179
8.6 Good Practice Considerations
183
8.7
Chapter Summary
183
8.8 Feedback on Self-Assessment Questions
183
References
185
9 Visualization and 3-D Methods
187
9.1 Introduction
187
9.2 Taxonomy for Visualization
188
9.3 Scene-Based Visualization
188
9.4 Object-Based Visualization
200
9.5 Other Visualization Methods
201
9.6 Good Practice Considerations
202
9.7
Chapter Summary
202
9.8 Feedback on Self-Assessment Questions
204
References
206
10 Good Practice 207
10.1 Introduction
207
10.2 Scientific Rigor
207
10.3 Ethical Practice
210
10.4 Human Factors
211
10.5 Information Technology
213
10.8
Chapter Summary
223
10.9 Feedback on Self-Assessment Questions
223
References
224
11 Case Studies 225
11.1 Introduction
225
11.2 Image Enhancement
225
11.3 Segmentation
230
11.4 Image Compression
241
11.5 Image Registration
250
11.6 Visualization
256
11.7
Chapter Summary
264
References
264
12 For Instructors 267
12.1 Introduction
267
12.2 Writing Macros and Plugins for ImageJ
267
12.3 Article-Based Case Studies
269
12.4 Extensions to Material in Preceding
Chapters
270
12.5 Publicly Available Data
278
12.6
Chapter Summary
278
References
279
Index 281


Elizabeth Berry