Muutke küpsiste eelistusi

E-raamat: Practical Creativity and Innovation in Systems Engineering

(Tel Aviv University)
  • Formaat - EPUB+DRM
  • Hind: 139,49 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

A guide to systems engineering that highlights creativity and innovation in order to foster great ideas and carry them out 

Practical Creativity and Innovation in Systems Engineering exposes engineers to a broad set of creative methods they can adopt in their daily practices. In addition, this book guides engineers to become entrepreneurs within traditional engineering companies, promoting creative and innovative culture around them.

The author describes basic systems engineering concepts and includes an abbreviated summary of Standard 15288 systems’ life cycle processes. He then provides an extensive collection of practical creative methods which are linked to the various systems’ life cycle processes. Next, the author discusses obstacles to innovation and, in particular, how engineers can push creative ideas through layers of reactionary bureaucracy within non-innovative organizations. Finally, the author provides a comprehensive description of an exemplary creative and innovative case study recently completed.

The book is filled with illustrative examples and offers effective guidelines that can enhance individual engineers’ creative prowess as well as be used to create an organizational culture where creativity and innovation flourishes. This important book:

  • Offers typical systems engineering processes that can be accomplished in creative ways throughout the development and post-development portions of a system's lifetime.
  • Includes a large collection of practical creative methods applicable to engineering and other technological domains
  • Includes innovation advice needed to transform creative ideas into new products, services, businesses and marketing processes
  • Contains references and notes for further reading in every section

Written for systems engineering practitioners, graduate school students and faculty members of systems, electrical, aerospace, mechanical and industrial engineering schools, Practical Creativity and Innovation in Systems Engineering offers a useful guide for creating a culture that promotes innovation. 

Preface xiii
Acknowledgments xv
Part I Introduction
1(10)
1.1 Introduction to Part I
1(3)
1.2 Systems Engineering
4(1)
1.3 Creative Methods
5(1)
1.4 Promoting Innovative Culture
6(2)
1.5 Creative and Innovative Case Study
8(1)
1.6 Back Matter
9(1)
1.7 Bibliography
10(1)
Part II Systems Engineering
11(48)
2.1 Introduction to Part II
11(2)
2.2 Basic Systems Engineering Concepts
13(6)
2.2.1 Essence of Systems Engineering
13(1)
2.2.2 Organizations and Projects Concepts
13(1)
2.2.3 System Concepts
14(2)
2.2.4 Life Cycle Concepts
16(2)
2.2.5 Process Concepts
18(1)
2.2.6 Further Reading
19(1)
2.3 Standard 15288 Processes
19(25)
2.3.1 Agreement Process Group
20(1)
2.3.2 Organizational Project-Enabling Process Group
21(4)
2.3.3 Technical Management Process Group
25(6)
2.3.4 Technical Process Group
31(13)
2.3.5 Further Reading
44(1)
2.4 Philosophy of Engineering
44(13)
2.4.1 Engineering and Truth
45(1)
2.4.2 The Logic of Engineering Design
46(2)
2.4.3 The Context and Nature of Engineering Design
48(3)
2.4.4 Roles and Rules and the Modeling of Socio-Technical Systems
51(3)
2.4.5 Engineering as Synthesis - Doing Right Things and Doing Things Right
54(3)
2.4.6 Further Reading
57(1)
2.5 Bibliography
57(2)
Part III Creative Methods
59(146)
3.1 Introduction to Part III
59(2)
3.2 Divergent Methods for Individuals
61(27)
3.2.1 Lateral Thinking
61(7)
3.2.2 Resolving Contradictions
68(8)
3.2.3 Biomimicry Engineering
76(4)
3.2.4 Visual Creativity (Three Methods)
80(8)
3.3 Divergent Methods for Teams
88(17)
3.3.1 Classic Brainstorming
88(3)
3.3.2 Six Thinking Hats
91(3)
3.3.3 SWOT Analysis
94(6)
3.3.4 SCAMPER Analysis
100(3)
3.3.5 Focus Groups
103(2)
3.4 Convergent Methods for Individuals
105(19)
3.4.1 PMI Analysis
105(5)
3.4.2 Morphological Analysis
110(2)
3.4.3 Decision Tree Analysis
112(4)
3.4.4 Value Analysis/Value Engineering
116(6)
3.4.5 Pareto Analysis
122(2)
3.5 Convergent Methods for Teams
124(32)
3.5.1 Delphi Method
124(5)
3.5.2 SAST Analysis
129(5)
3.5.3 Cause-and-Effect Diagram
134(3)
3.5.4 Kano Model Analysis
137(5)
3.5.5 Group Decisions: Theoretical Background
142(8)
3.5.6 Group Decisions: Practical Methods
150(6)
3.6 Other Creative Methods
156(42)
3.6.1 Process Map Analysis
157(3)
3.6.2 Nine-Screens Analysis
160(5)
3.6.3 Technology Forecasting
165(7)
3.6.4 Design Structure Matrix Analysis
172(3)
3.6.5 Failure Mode Effect Analysis
175(9)
3.6.6 Anticipatory Failure Determination
184(7)
3.6.7 Conflict Analysis and Resolution
191(7)
3.7 Bibliography
198(7)
Part IV Promoting Innovative Culture
205(122)
4.1 Introduction to Part IV
205(2)
4.2 Systems Evolution
207(19)
4.2.1 Modeling Systems Evolution -- S-Curve
207(2)
4.2.2 Laws of Systems Evolution
209(17)
4.2.3 Further Reading
226(1)
4.3 Modeling the Innovation Process
226(13)
4.3.1 Classes and Types of Innovations
226(2)
4.3.2 Technological Innovation Process
228(7)
4.3.3 Innovation Funding
235(4)
4.3.4 Further Reading
239(1)
4.4 Measuring Creativity and Innovation
239(11)
4.4.1 Defining Innovation Objectives
239(2)
4.4.2 Measuring the Innovation Process
241(5)
4.4.3 Innovation Capability Maturity Model
246(4)
4.4.4 Further Reading
250(1)
4.5 Obstacles to Innovation
250(5)
4.5.1 Human Habits Factors
250(2)
4.5.2 Costs Factors
252(1)
4.5.3 Institutional Factors
252(1)
4.5.4 Knowledge Factors
253(1)
4.5.5 Markets Factors
253(1)
4.5.6 Innovation Obstacles and Classes of Innovations
254(1)
4.5.7 Further Reading
255(1)
4.6 Promoting Organization's Innovative Culture
255(20)
4.6.1 Introduction
255(1)
4.6.2 Innovation and Leadership
256(3)
4.6.3 Innovation and Organization
259(1)
4.6.4 Innovation and People
260(2)
4.6.5 Innovation and Assets
262(2)
4.6.6 Innovation and Culture
264(3)
4.6.7 Innovation and Values
267(1)
4.6.8 Innovation and Processes
268(1)
4.6.9 Innovation and Tools
268(3)
4.6.10 Conclusion: Ascent to Innovation: Practical Steps
271(3)
4.6.11 Further Reading
274(1)
4.7 Pushing Creative Ideas by Individual Engineers
275(15)
4.7.1 Large Organizations Seldom Innovate
275(5)
4.7.2 Characteristics of Innovative Engineers
280(5)
4.7.3 Innovation Advice to Creative Engineers
285(5)
4.7.4 Further Reading
290(1)
4.8 Human Diversity and Gendered Innovation
290(18)
4.8.1 Human Diversity
290(2)
4.8.2 Shift in Gender Paradigm
292(3)
4.8.3 Gender Disparity and Innovation Implications
295(3)
4.8.4 Advancing Gendered Innovation
298(6)
4.8.5 Gendered Innovation Example
304(4)
4.8.6 Further Reading
308(1)
4.9 Cognitive Biases and Decision-Making
308(11)
4.9.1 Cognitive Biases
309(6)
4.9.2 Cognitive Biases and Strategic Decisions
315(3)
4.9.3 Further Reading
318(1)
4.10 Bibliography
319(8)
Part V Creative and Innovative Case Study
327(120)
5.1 Introduction to Part V
327(2)
5.2 A Problem Seeking a Solution
329(2)
5.2.1 The Problem and Its Inception
329(2)
5.2.2 Initial Funding Effort
331(1)
5.2.3 Further Reading
331(1)
5.3 Gaining Deeper Insights
331(15)
5.3.1 The Problem and the Approach
332(2)
5.3.2 Main Ideas of the Proposed Work
334(2)
5.3.3 Measurable Project Objectives
336(1)
5.3.4 Basis for Predicting the Objectives
337(3)
5.3.5 Systems Adaptability: State-of-the-Art
340(5)
5.3.6 Further Reading
345(1)
5.4 Project Planning
346(42)
5.4.1 Project Planned Activities
346(13)
5.4.2 Detailed Work Package Descriptions
359(13)
5.4.3 Risks and Contingency Plans
372(3)
5.4.4 Management Structure and Procedures
375(7)
5.4.5 Project Participants
382(5)
5.4.6 Resources Needed
387(1)
5.5 The AMISA Project
388(20)
5.5.1 AMISA Initiation
388(1)
5.5.2 Identifying the DFA State-of-the-Art
389(1)
5.5.3 Establishing Requirements for AMISA
390(1)
5.5.4 Implementing a Software Support Tool
390(1)
5.5.5 Developing Six Pilot Projects
391(6)
5.5.6 Generating Deliverables
397(2)
5.5.7 Planning Exploitation beyond AMISA
399(1)
5.5.8 Disseminating Project Results
399(1)
5.5.9 Assessing the AMISA Project
400(2)
5.5.10 Consortium Meetings
402(3)
5.5.11 EC Summary of the Project
405(3)
5.5.12 Further Reading
408(1)
5.6 Architecture Options Theory
408(9)
5.6.1 Financial and Engineering Options
408(2)
5.6.2 Transaction Costs and Interface Costs
410(2)
5.6.3 Architecture Adaptability Value
412(1)
5.6.4 Design Structure Matrix
413(1)
5.6.5 Dynamic System Value Modeling
414(3)
5.6.6 Further Reading
417(1)
5.7 Architecture Options Example
417(5)
5.7.1 Step 1: Define the System and Its Environment
418(1)
5.7.2 Step 2: Decompose the System Architecture
419(1)
5.7.3 Step 3: Determine a Time Horizon for System Upgrade
419(3)
5.7 A Step 4: Determine Option Value (OV) of Each Component
422(20)
5.7.5 Step 5: Determine Interface Cost (IC) of Each Interface
426(1)
5.7.6 Step 6: Model the System by Way of Design Structure Matrix (DSM)
427(1)
5.7.7 Step 7: Compute Base System's AAV
428(1)
5.7.8 Step 8: Define Components' Exclusion Sets
428(3)
5.7.9 Step 9: Optimize the System Architecture (Merging)
431(3)
5.7.10 Step 10: Perform Sensitivity Analyses
434(4)
5.7.11 Step 11: Evaluate Alternative System Architectures
438(1)
5.7.12 Step 12: Define System Variants
439(2)
5.7.13 Step 13: Estimate the Optimal Upgrade Time
441(1)
5.7.14 Further Reading
442(1)
5.8 AMISA - Endnote
442(2)
5.9 Bibliography
444(3)
Appendix A Life Cycle Processes versus Recommended Creative Methods
447(4)
Appendix B Extended Laws of Technical Systems Evolution
451(18)
B.1 Law 1: System Convergence
452(1)
B.2 Laws 2 to 7: Systems Merging
452(4)
B.3 Law 8: Flow Conductivity
456(2)
B.4 Laws 9 to 14: Enhanced Coordination
458(4)
B.5 Law 15: Controllability
462(1)
B.6 Law 16: Dynamization
463(1)
B.7 Law 17: Transition to Super System
463(2)
B.8 Law 18: Increasing System Completeness
465(1)
B.9 Law 19: Displacement of Human
466(1)
B.10 Law 20: Uneven System Evolution
466(1)
B.11 Law 21: Technology General Progress
467(2)
Appendix C List of Acronyms
469(6)
Appendix D Permissions to Use Third-Party Copyright Material
475(8)
D.1 Part I: Introduction
475(1)
D.2 Part II: Systems Engineering
475(1)
D.3 Part III: Creative Methods
476(1)
D.4 Part IV: Promoting Innovative Culture
477(2)
D.5 Part V: Creative and Innovative Case Study
479(1)
D.6 Appendices
480(3)
Index 483(8)
Wiley Series in Systems Engineering and Management 491
AVNER ENGEL, PhD, has 45 years' experience in areas of software programming, systems and software engineering, technical management within large firms in the United States and Israel, academic teaching, and scientific research. He is the author of Verification, Validation and Testing of Engineered Systems, published by Wiley as part of Wiley's Systems Engineering and Management Series. Dr. Engel is currently with the Tel Aviv University – Systems Engineering Research Institute (TAU-SERI).