Preface |
|
xv | |
Author |
|
xvii | |
Chapter 1 An Introduction to Failure Analysis |
|
1 | (20) |
|
|
2 | (2) |
|
Root Cause Analysis (RCA) and Understanding the Roots |
|
|
4 | (8) |
|
|
4 | (1) |
|
|
5 | (3) |
|
|
8 | (3) |
|
|
11 | (1) |
|
The Multiple Roots and How They Interact |
|
|
12 | (2) |
|
Why Multiple Roots Are Frequently Missed |
|
|
12 | (2) |
|
|
14 | (4) |
|
|
18 | (1) |
|
|
18 | (1) |
|
|
19 | (2) |
Chapter 2 Some General Comments on Failure Analysis |
|
21 | (14) |
|
The Failure Mechanisms - How They Occur and Their Appearances |
|
|
21 | (12) |
|
When Should a Failure Analysis Be Conducted and How Deeply Should It Go? |
|
|
21 | (25) |
|
|
22 | (2) |
|
|
24 | (2) |
|
Finding the Physical Roots |
|
|
26 | (1) |
|
Comments on the Seven Steps - Continued |
|
|
27 | (2) |
|
Introduction to Materials - Stresses and Strains |
|
|
29 | (1) |
|
Determining the Failure Mechanisms |
|
|
30 | (1) |
|
The Plant Failure Analysis Laboratory |
|
|
30 | (3) |
|
|
33 | (1) |
|
|
33 | (2) |
Chapter 3 Materials and the Sources of Stresses |
|
35 | (28) |
|
|
35 | (1) |
|
|
36 | (1) |
|
|
37 | (2) |
|
Modulus of Elasticity (Young's Modulus) |
|
|
39 | (1) |
|
|
40 | (2) |
|
|
42 | (1) |
|
Fatigue Strength vs. Time |
|
|
42 | (3) |
|
|
45 | (1) |
|
|
46 | (5) |
|
Iron and Its Alloying Elements |
|
|
49 | (2) |
|
|
51 | (2) |
|
Understanding Steel Terminology and Material Designations |
|
|
53 | (1) |
|
|
54 | (1) |
|
|
54 | (1) |
|
|
55 | (1) |
|
|
56 | (2) |
|
|
58 | (1) |
|
|
58 | (2) |
|
Temperature Effect on Tensile, Fatigue and Yield Strengths |
|
|
60 | (1) |
|
|
60 | (1) |
|
|
61 | (2) |
Chapter 4 Overload Failures |
|
63 | (18) |
|
|
63 | (9) |
|
Temperature Effects on Overload Failures |
|
|
66 | (2) |
|
Analysis of Ductile Failures |
|
|
68 | (2) |
|
Analysis of Brittle Fractures |
|
|
70 | (2) |
|
|
71 | (1) |
|
|
72 | (8) |
|
Brittle Fractures of Ductile Materials |
|
|
72 | (5) |
|
|
73 | (1) |
|
|
74 | (1) |
|
Notch Sensitivity of Brittle Materials |
|
|
75 | (2) |
|
Three Valuable Brittle Fracture Examples |
|
|
77 | (47) |
|
A Case Hardened Bell Crank |
|
|
77 | (1) |
|
Brittle Fracture of Two Very Ductile Stainless Bolts |
|
|
78 | (1) |
|
A Great Welding Metallurgy/Brittle Fracture/Failure Analysis Example |
|
|
78 | (2) |
|
|
80 | (1) |
|
|
80 | (1) |
Chapter 5 Fatigue Failures (Part 1): The Basics |
|
81 | (30) |
|
Fatigue Failure Categories |
|
|
81 | (2) |
|
|
83 | (1) |
|
Structure Changes Caused by High Cycle Fatigue |
|
|
84 | (2) |
|
Diagnosing a High Cycle Fatigue Failure |
|
|
86 | (1) |
|
|
86 | (2) |
|
Fracture Growth and Understanding the Source of |
|
|
|
the Stress - Rotating Bending vs. Plain Bending |
|
|
88 | (3) |
|
Progression Marks and Varying Stress Levels |
|
|
91 | (2) |
|
Progression Marks and Stress Concentrations |
|
|
93 | (1) |
|
|
93 | (3) |
|
Rotating Bending Failures with Multiple Origins |
|
|
96 | (1) |
|
Stress and Stress Concentrations |
|
|
96 | (2) |
|
Fracture Face Contours and Stress Concentrations |
|
|
98 | (1) |
|
Interpreting the Instantaneous Zone (IZ) Shape |
|
|
99 | (2) |
|
Guides to Interpreting the Fatigue Fracture Face |
|
|
101 | (1) |
|
|
101 | (9) |
|
|
110 | (1) |
Chapter 6 Fatigue Failures (Part 2): Torsional, Low, and Very Low Cycle, Failure Influences, and Some Fatigue Interpretations |
|
111 | (26) |
|
Torsional Fatigue and Failures |
|
|
111 | (5) |
|
River Marks and Fatigue Crack Growth |
|
|
116 | (1) |
|
Plate and Rectangular Member Failures |
|
|
117 | (2) |
|
Fatigue Data Reliability and Corrosion Effect on Fatigue Strength |
|
|
119 | (2) |
|
Residual Stress contribution to Fatigue Cracking |
|
|
121 | (1) |
|
Combined Fatigue and Steady State Stresses |
|
|
122 | (1) |
|
|
123 | (1) |
|
Very Low Cycle and Low Cycle Fatigue |
|
|
124 | (3) |
|
VLC in Relatively Brittle Materials |
|
|
124 | (2) |
|
|
126 | (1) |
|
|
127 | (1) |
|
|
128 | (8) |
|
|
136 | (1) |
Chapter 7 Understanding and Recognizing Corrosion |
|
137 | (40) |
|
Some Basics about Corrosion |
|
|
137 | (3) |
|
Conditions Affecting Corrosion Rates |
|
|
140 | (9) |
|
|
140 | (2) |
|
|
142 | (2) |
|
|
144 | (1) |
|
Exposure Time and Flow Effects |
|
|
144 | (3) |
|
The Effect of Atmosphere and Contaminants |
|
|
147 | (2) |
|
How Oxides Prevent or Reduce Corrosion (Aluminum, Stainless Steel, Etc.) |
|
|
149 | (1) |
|
|
149 | (26) |
|
|
150 | (4) |
|
|
150 | (2) |
|
Comments on Uniform Corrosion |
|
|
152 | (1) |
|
|
152 | (1) |
|
|
153 | (1) |
|
|
154 | (5) |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
156 | (1) |
|
|
157 | (2) |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
159 | (1) |
|
|
160 | (1) |
|
|
160 | (4) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
161 | (1) |
|
|
162 | (2) |
|
Concentration Cell Corrosion |
|
|
164 | (2) |
|
|
164 | (1) |
|
|
164 | (1) |
|
|
164 | (1) |
|
|
164 | (2) |
|
|
166 | (2) |
|
|
166 | (1) |
|
|
166 | (2) |
|
|
168 | (1) |
|
Stress Corrosion Cracking (SCC) |
|
|
168 | (3) |
|
|
169 | (1) |
|
|
170 | (1) |
|
Prevention and Correction |
|
|
171 | (1) |
|
|
171 | (4) |
|
|
171 | (1) |
|
Hydrogen Influenced Cracking (HIC) |
|
|
172 | (2) |
|
|
174 | (1) |
|
A Special Category: Microbiologically Influenced Corrosion |
|
|
175 | (1) |
|
|
175 | (2) |
Chapter 8 Lubrication and Wear |
|
177 | (32) |
|
Three Types of Lubricated Contact |
|
|
177 | (6) |
|
Lambda - the Lubricant Film Thickness |
|
|
178 | (1) |
|
Ball and Roller Bearing Lubrication (Elastohydrodynamic) |
|
|
179 | (1) |
|
|
180 | (1) |
|
|
180 | (3) |
|
|
183 | (1) |
|
Understand Different Lubricants |
|
|
183 | (8) |
|
Viscosity Measurement and Viscosity Index |
|
|
183 | (1) |
|
|
184 | (2) |
|
|
186 | (1) |
|
|
187 | (3) |
|
|
190 | (1) |
|
|
191 | (7) |
|
|
191 | (8) |
|
The Pressure Viscosity Coefficient |
|
|
192 | (2) |
|
Lubricant Films and the Effects of Contamination |
|
|
194 | (1) |
|
Developing a Relubrication Program |
|
|
195 | (3) |
|
|
198 | (1) |
|
|
199 | (1) |
|
|
199 | (8) |
|
|
206 | (1) |
|
Summary Comments on Wear Failures |
|
|
207 | (1) |
|
|
207 | (2) |
Chapter 9 Belt Drives |
|
209 | (22) |
|
|
209 | (7) |
|
|
212 | (1) |
|
|
213 | (1) |
|
|
214 | (1) |
|
|
215 | (1) |
|
|
216 | (1) |
|
Belt Operation and Failure Causes |
|
|
216 | (5) |
|
|
216 | (1) |
|
|
217 | (1) |
|
High Ambient Operating Temperatures |
|
|
218 | (1) |
|
|
219 | (1) |
|
|
219 | (1) |
|
|
220 | (1) |
|
|
221 | (1) |
|
|
222 | (1) |
|
Belt Drive Failure Analysis Techniques |
|
|
222 | (9) |
Chapter 10 Ball and Roller Bearings |
|
231 | (50) |
|
|
231 | (3) |
|
|
231 | (3) |
|
|
234 | (1) |
|
Bearing Ratings and Equipment Design |
|
|
235 | (3) |
|
Hertzian Fatigue, Rolling Element Bearing Lubrication, and Surface Fatigue |
|
|
238 | (2) |
|
The Reasons Why Bearings Fail |
|
|
240 | (1) |
|
A Detailed Rolling Element Bearing Failure Analysis Procedure |
|
|
241 | (25) |
|
Appearance of Electrical Damage Mechanisms |
|
|
266 | (8) |
|
Roller and Tapered Roller Bearing Mounting Surfaces |
|
|
274 | (2) |
|
The Detailed Rolling Element Bearing Failure Analysis Procedure |
|
|
276 | (2) |
|
Final Comments on Failure Analysis |
|
|
278 | (1) |
|
|
279 | (2) |
Chapter 11 Gears |
|
281 | (38) |
|
|
281 | (2) |
|
|
283 | (2) |
|
|
285 | (2) |
|
Load and Stress Fluctuations |
|
|
287 | (2) |
|
|
289 | (3) |
|
|
292 | (3) |
|
|
295 | (14) |
|
Design Life and Deterioration Mechanisms |
|
|
295 | (1) |
|
Through Hardened Gear Deterioration Mechanisms |
|
|
296 | (7) |
|
|
296 | (4) |
|
|
300 | (1) |
|
|
301 | (1) |
|
|
302 | (1) |
|
Case Hardened Gear Deterioration Mechanisms |
|
|
303 | (8) |
|
|
303 | (2) |
|
|
305 | (1) |
|
|
305 | (2) |
|
|
307 | (1) |
|
|
307 | (1) |
|
|
308 | (1) |
|
|
309 | (2) |
|
|
311 | (7) |
|
Intermediate Pinion Failure Example 11-1 |
|
|
311 | (1) |
|
Broken Gear Tooth - Failure Example 11-2 |
|
|
312 | (1) |
|
Large Pump Drive Gear - Failure Example 11-3 |
|
|
313 | (1) |
|
Haul Truck Pinion - Failure Example 11-4 |
|
|
314 | (1) |
|
Paper Machine Reducer Gear - Failure Example 11-5 |
|
|
315 | (1) |
|
Kiln Reducer Intermediate Gear - Failure Example 11-6 |
|
|
315 | (1) |
|
Inboard-Outboard Prop Drive Gear - Failure Example 11-7 |
|
|
316 | (1) |
|
Reversing Industrial Drive Gear - Failure Example 11-8 |
|
|
316 | (2) |
|
|
318 | (1) |
Chapter 12 Fastener and Bolted Joint Failures |
|
319 | (30) |
|
|
319 | (10) |
|
|
321 | (3) |
|
|
324 | (2) |
|
|
326 | (1) |
|
|
327 | (2) |
|
|
329 | (4) |
|
Bolting Patterns and Sequences |
|
|
329 | (4) |
|
|
333 | (5) |
|
|
334 | (2) |
|
Hydrogen Embrittlement and Hydrogen Influenced Cracking |
|
|
336 | (1) |
|
Failure Locations and Bolt Designs |
|
|
337 | (1) |
|
General Comments and Cautions on Bolting |
|
|
337 | (1) |
|
|
338 | (10) |
|
|
338 | (1) |
|
|
339 | (1) |
|
|
339 | (1) |
|
|
340 | (1) |
|
|
341 | (1) |
|
|
342 | (1) |
|
|
343 | (1) |
|
|
344 | (1) |
|
|
345 | (1) |
|
|
345 | (1) |
|
|
346 | (2) |
|
|
348 | (1) |
Chapter 13 Miscellaneous Machine Component Failures - Chains, Lip Seals, Couplings, Universal Joints, and Plain Bearings |
|
349 | (24) |
|
|
349 | (5) |
|
|
349 | (1) |
|
|
350 | (1) |
|
|
351 | (1) |
|
|
352 | (2) |
|
|
354 | (3) |
|
|
356 | (1) |
|
|
357 | (5) |
|
|
357 | (3) |
|
|
360 | (1) |
|
|
360 | (2) |
|
|
362 | (9) |
|
Plain Bearings (Journal Bearings) |
|
|
363 | (8) |
|
|
371 | (2) |
PPFA - A Glossary of Technical Terms |
|
373 | (6) |
Index |
|
379 | |