Muutke küpsiste eelistusi

E-raamat: Radio-Frequency Integrated-Circuit Engineering

(Texas A&M University)
  • Formaat - EPUB+DRM
  • Hind: 208,65 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs.

* Provides essential knowledge in EM and microwave engineering, passive and active RFICs, RFIC analysis and design techniques, and RF systems vital for RFIC students and engineers

* Blends analog and microwave engineering approaches for RFIC design at high frequencies

* Includes problems at the end of each chapter
Preface xvii
1 Introduction
1(5)
Problems
5(1)
2 Fundamentals Of Electromagnetics
6(14)
2.1 EM Field Parameters
6(1)
2.2 Maxwell's Equations
7(1)
2.3 Auxiliary Relations
8(1)
2.3.1 Constitutive Relations
8(1)
2.3.2 Current Relations
9(1)
2.4 Sinusoidal Time-Varying Steady State
9(1)
2.5 Boundary Conditions
10(2)
2.5.1 General Boundary Conditions
11(1)
2.5.2 Specific Boundary Conditions
11(1)
2.6 Wave Equations
12(1)
2.7 Power
13(1)
2.8 Loss and Propagation Constant in Medium
14(2)
2.9 Skin Depth
16(1)
2.10 Surface Impedance
17(3)
Problems
19(1)
3 Lumped Elements
20(65)
3.1 Fundamentals of Lumped Elements
20(8)
3.1.1 Basic Equations
23(5)
3.2 Quality Factor of Lumped Elements
28(2)
3.3 Modeling of Lumped Elements
30(2)
3.4 Inductors
32(28)
3.4.1 Inductor Configurations
32(4)
3.4.2 Loss in Inductors
36(3)
3.4.3 Equivalent-Circuit Models of Inductors
39(6)
3.4.4 Resonance in Inductors
45(1)
3.4.5 Quality Factor of Inductors
46(5)
3.4.6 High Q Inductor Design Considerations
51(9)
3.5 Lumped-Element Capacitors
60(12)
3.5.1 Capacitor Configurations
60(3)
3.5.2 Equivalent-Circuit Models of Capacitors
63(5)
3.5.3 Resonance
68(1)
3.5.4 Quality Factor
69(2)
3.5.5 High Q Capacitor Design Considerations
71(1)
3.6 Lumped-Element Resistors
72(13)
3.6.1 Resistor Configurations
72(1)
3.6.2 Basic Resistor Equations
72(3)
3.6.3 Equivalent-Circuit Models of Resistors
75(1)
References
75(1)
Problems
76(9)
4 Transmission Lines
85(101)
4.1 Essentials of Transmission Lines
85(1)
4.2 Transmission-Line Equations
86(7)
4.2.1 General Transmission-Line Equations
86(5)
4.2.2 Sinusoidal Steady-State Transmission-Line Equations
91(2)
4.3 Transmission-Line Parameters
93(4)
4.3.1 General Transmission Lines
93(3)
4.3.2 Lossless Transmission Lines
96(1)
4.3.3 Low Loss Transmission Lines
96(1)
4.4 Per-Unit-Length Parameters R, L, C, and G
97(10)
4.4.1 General Formulation
97(7)
4.4.2 Formulation for Simple Transmission Lines
104(3)
4.5 Dielectric and Conductor Losses in Transmission Lines
107(4)
4.5.1 Dielectric Attenuation Constant
108(1)
4.5.2 Conductor Attenuation Constant
109(2)
4.6 Dispersion and Distortion in Transmission Lines
111(4)
4.6.1 Dispersion
111(1)
4.6.2 Distortion
111(2)
4.6.3 Distortion-Less Transmission Lines
113(2)
4.7 Group Velocity
115(2)
4.8 Impedance, Reflection Coefficients, and Standing-Wave Ratios
117(9)
4.8.1 Impedance
117(2)
4.8.2 Reflection Coefficients
119(1)
4.8.3 Standing-Wave Ratio
120(2)
4.8.4 Perfect Match and Total Reflection
122(1)
4.8.5 Lossless Transmission Lines
123(3)
4.9 Synthetic Transmission Lines
126(2)
4.10 Tem and Quasi-Tem Transmission-Line Parameters
128(4)
4.10.1 Static or Quasi-Static Analysis
129(1)
4.10.2 Dynamic Analysis
130(2)
4.11 Printed-Circuit Transmission Lines
132(12)
4.11.1 Microstrip Line
133(2)
4.11.2 Coplanar Waveguide
135(3)
4.11.3 Coplanar Strips
138(1)
4.11.4 Strip Line
139(2)
4.11.5 Slot Line
141(1)
4.11.6 Field Distributions
142(2)
4.12 Transmission Lines in RFICs
144(8)
4.12.1 Microstrip Line
145(1)
4.12.2 Coplanar Waveguide
146(3)
4.12.3 Coplanar Strips
149(1)
4.12.4 Strip Line
149(1)
4.12.5 Slot Line
150(1)
4.12.6 Transitions and Junctions Between Transmission Lines
150(2)
4.13 Multi-Conductor Transmission Lines
152(34)
4.13.1 Transmission-Line Equations
152(4)
4.13.2 Propagation Modes
156(1)
4.13.3 Characteristic Impedance and Admittance Matrix
157(2)
4.13.4 Mode Characteristic Impedances and Admittances
159(2)
4.13.5 Impedance and Admittance Matrix
161(2)
4.13.6 Lossless Multiconductor Transmission Lines
163(10)
References
173(1)
Problems
174(8)
Appendix 4 Transmission-Line Equations Derived From Maxwell's Equations
182(4)
5 Resonators
186(58)
5.1 Fundamentals of Resonators
186(3)
5.1.1 Parallel Resonators
187(1)
5.1.2 Series Resonators
188(1)
5.2 Quality Factor
189(16)
5.2.1 Parallel Resonators
190(3)
5.2.2 Series Resonators
193(2)
5.2.3 Unloaded Quality Factor
195(1)
5.2.4 Loaded Quality Factor
195(3)
5.2.5 Evaluation of and Relation between Unloaded and Loaded Quality Factors
198(7)
5.3 Distributed Resonators
205(26)
5.3.1 Quality-Factor Characteristics
206(1)
5.3.2 Transmission-Line Resonators
207(9)
5.3.3 Waveguide Cavity Resonators
216(15)
5.4 Resonator's Slope Parameters
231(1)
5.5 Transformation of Resonators
231(13)
5.5.1 Impedance and Admittance Inverters
231(5)
5.5.2 Examples of Resonator Transformation
236(1)
References
237(1)
Problems
238(6)
6 Impedance Matching
244(27)
6.1 Basic Impedance Matching
244(4)
6.1.1 Smith Chart
244(4)
6.2 Design of Impedance-Matching Networks
248(14)
6.2.1 Impedance-Matching Network Topologies
249(1)
6.2.2 Impedance Transformation through Series and Shunt Inductor and Capacitor
249(3)
6.2.3 Examples of Impedance-Matching Network Design
252(3)
6.2.4 Transmission-Line Impedance-Matching Networks
255(7)
6.3 Kuroda Identities
262(9)
References
266(1)
Problems
266(5)
7 Scattering Parameters
271(33)
7.1 Multiport Networks
271(2)
7.2 Impedance Matrix
273(1)
7.3 Admittance Matrix
274(1)
7.4 Impedance and Admittance Matrix in RF Circuit Analysis
274(5)
7.4.1 T-Network Representation of Two-Port RF Circuits
275(3)
7.4.2 π-Network Representation of Two-Port RF Circuits
278(1)
7.5 Scattering Matrix
279(14)
7.5.1 Fundamentals of Scattering Matrix
279(8)
7.5.2 Examples for Scattering Parameters
287(1)
7.5.3 Effect of Reference-Plane Change on Scattering Matrix
288(2)
7.5.4 Return Loss, Insertion Loss, and Gain
290(3)
7.6 Chain Matrix
293(1)
7.7 Scattering Transmission Matrix
294(1)
7.8 Conversion Between Two-Port Parameters
295(9)
7.8.1 Conversion from [ Z] to [ ABCD]
295(3)
References
298(1)
Problems
298(6)
8 Rf Passive Components
304(75)
8.1 Characteristics of Multiport RF Passive Components
304(7)
8.1.1 Characteristics of Three-Port Components
304(5)
8.1.2 Characteristics of Four-Port Components
309(2)
8.2 Directional Couplers
311(15)
8.2.1 Fundamentals of Directional Couplers
311(2)
8.2.2 Parallel-Coupled Directional Couplers
313(13)
8.3 Hybrids
326(13)
8.3.1 Hybrid T
326(2)
8.3.2 Ring Hybrid
328(7)
8.3.3 Branch-Line Coupler
335(4)
8.4 Power Dividers
339(6)
8.4.1 Even-Mode Analysis
340(2)
8.4.2 Odd-Mode Analysis
342(1)
8.4.3 Superimposition of Even and Odd Modes
343(2)
8.5 Filters
345(34)
8.5.1 Low Pass Filter
345(12)
8.5.2 High Pass Filter Design
357(2)
8.5.3 Band-Pass Filter Design
359(2)
8.5.4 Band-Stop Filter Design
361(3)
8.5.5 Filter Design Using Impedance and Admittance Inverters
364(7)
References
371(1)
Problems
372(7)
9 Fundamentals Of Cmos Transistors For Rfic Design
379(39)
9.1 MOSFET Basics
379(7)
9.1.1 MOSFET Structure
379(3)
9.1.2 MOSFET Operation
382(4)
9.2 MOSFET Models
386(21)
9.2.1 Physics-Based Models
387(1)
9.2.2 Empirical Models
387(15)
9.2.3 SPICE Models
402(2)
9.2.4 Passive MOSFET Models
404(3)
9.3 Important MOSFET Frquencies
407(2)
9.3.1 ƒT
408(1)
9.3.2 ƒmax
408(1)
9.4 Other Important MOSFET Parameters
409(1)
9.5 Varactor Diodes
409(9)
9.5.1 Varactor Structure and Operation
409(1)
9.5.2 Varactor Model and Characteristics
410(2)
References
412(1)
Problems
412(6)
10 Stability
418(12)
10.1 Fundamentals of Stability
418(3)
10.2 Determination of Stable and Unstable Regions
421(6)
10.3 Stability Consideration for N-Port Circuits
427(3)
References
427(1)
Problems
428(2)
11 Amplifiers
430(142)
11.1 Fundamentals of Amplifier Design
430(13)
11.1.1 Power Gain
430(3)
11.1.2 Gain Design
433(10)
11.2 Low Noise Amplifiers
443(8)
11.2.1 Noise Figure Fundamentals
443(3)
11.2.2 MOSFET Noise Parameters
446(1)
11.2.3 Noise Figure of Multistage Amplifiers
447(1)
11.2.4 Noise-Figure Design
448(2)
11.2.5 Design for Gain and Noise Figure
450(1)
11.3 Design Examples
451(4)
11.3.1 Unilateral Amplifier Design
451(3)
11.3.2 Bilateral Amplifier Design
454(1)
11.4 Power Amplifiers
455(15)
11.4.1 Power-Amplifier Parameters
455(3)
11.4.2 Power-Amplifier Types
458(12)
11.5 Balanced Amplifiers
470(19)
11.5.1 Differential Amplifiers
470(15)
11.5.2 Ninety-Degree Balanced Amplifiers
485(2)
11.5.3 Push-Pull Amplifiers
487(2)
11.6 Broadband Amplifiers
489(59)
11.6.1 Compensated Matching Networks
489(1)
11.6.2 Distributed Amplifiers
490(33)
11.6.3 Feedback Amplifiers
523(17)
11.6.4 Cascoded Common-Source Amplifiers
540(8)
11.7 Current Mirrors
548(24)
11.7.1 Basic Current Mirror
550(1)
11.7.2 Cascode Current Mirror
550(2)
References
552(1)
Problems
553(10)
A11.1 Fundamentals of Signal Flow Graph
563(1)
A11.2 Signal Flow Graph of Two-Port Networks
563(1)
A11.2.1 Transistor's Signal Flow Graph
563(1)
A11.2.2 Input Matching Network's Signal Flow Graph
564(1)
A11.2.3 Output Matching Network's Signal Flow Graph
565(1)
A11.2.4 Signal Flow Graph of the Composite Two-Port Network
566(1)
A11.3 Derivation of Network's Parameters Using Signal Flow Graphs
566(1)
A11.3.1 Examples of Derivation
567(1)
A11.3.2 Derivation of Reflection Coefficients and Power Gain
568(3)
References
571(1)
12 Oscillators
572(61)
12.1 Principle of Oscillation
572(3)
12.1.1 Oscillation Conditions
573(1)
12.1.2 Oscillation Determination
574(1)
12.2 Fundamentals of Oscillator Design
575(12)
12.2.1 Basic Oscillators
576(3)
12.2.2 Feedback Oscillators
579(8)
12.3 Phase Noise
587(15)
12.3.1 Fundamentals of Phase Noise
588(5)
12.3.2 Phase Noise Modeling
593(6)
12.3.3 Low Phase-Noise Design Consideration
599(1)
12.3.4 Effects of Phase Noise on Systems
599(2)
12.3.5 Analysis Example of Effects of Phase Noise
601(1)
12.4 Oscillator Circuits
602(31)
12.4.1 Cross-Coupled Oscillators
602(10)
12.4.2 Distributed Oscillators
612(5)
12.4.3 Push-Push Oscillators
617(9)
References
626(1)
Problems
627(6)
13 Mixers
633(61)
13.1 Fundamentals of Mixers
633(8)
13.1.1 Mixing Principle
633(3)
13.1.2 Mixer Parameters
636(5)
13.2 Mixer Types
641(9)
13.2.1 Single-Ended Mixer
642(1)
13.2.2 Single-Balanced Mixer
642(4)
13.2.3 Double-Balanced Mixer
646(3)
13.2.4 Doubly Double-Balanced Mixer
649(1)
13.3 Other Mixers
650(6)
13.3.1 Passive Mixer
650(1)
13.3.2 Image-Reject Mixer
651(1)
13.3.3 Quadrature Mixer
652(1)
13.3.4 Distributed Mixer
652(4)
13.4 Mixer Analysis and Design
656(11)
13.4.1 Switching Mixer Fundamental
656(2)
13.4.2 Single-Ended Mixer
658(3)
13.4.3 Single-Balanced Mixer
661(2)
13.4.4 Double-Balanced Mixer
663(2)
13.4.5 Source Degeneration in Mixer Design
665(2)
13.5 Sampling Mixer
667(27)
13.5.1 Fundamentals of Sampling
668(1)
13.5.2 Sampling Theory
669(1)
13.5.3 Sampling Process
670(3)
13.5.4 Sample and Hold
673(5)
13.5.5 Sampling Switch
678(1)
13.5.6 Integrated Sampling Mixer
678(11)
References
689(1)
Problems
690(4)
14 Switches
694(53)
14.1 Fundamentals of Switches
694(3)
14.1.1 Switch Operation
694(1)
14.1.2 Important Parameters
695(2)
14.2 Analysis of Switching MOSFET
697(5)
14.2.1 Analysis of Shunt Transistor
697(1)
14.2.2 Analysis of Series Transistor
698(1)
14.2.3 Analysis of Combined Series and Shunt Transistors
699(1)
14.2.4 Selection of MOSFET
699(2)
14.2.5 Design Consideration for Improved Insertion Loss and Isolation
701(1)
14.3 SPST Switches
702(10)
14.3.1 SPST Switch Employing Two Parallel MOSFETs
702(1)
14.3.2 SPST Switch Employing Two Series MOSFETs
703(1)
14.3.3 SPST Switch Employing Two Series and Two Shunt MOSFETs
703(1)
14.3.4 SPST Switch Using Impedance or Admittance Inverters
703(9)
14.4 SPDT Switches
712(2)
14.4.1 SPDT Switch Topologies
712(1)
14.4.2 SPDT Switch Analysis
713(1)
14.5 Ultra-Wideband Switches
714(13)
14.5.1 Ultra-Wideband SPST Switch
715(6)
14.5.2 Ultra-Wideband T/R Switch
721(6)
14.6 Ultra-High-Isolation Switches
727(10)
14.6.1 Ultra-High-Isolation Switch Architecture and Analysis
727(6)
14.6.2 Ultra-High-Isolation SPST Switch Design
733(4)
14.7 Filter Switches
737(10)
References
739(1)
Problems
739(8)
15 Rfic Simulation, Layout, And Test
747(41)
15.1 RFIC Simulation
748(6)
15.1.1 DC Simulation
749(1)
15.1.2 Small-Signal AC Simulation
749(1)
15.1.3 Transient Simulation
749(1)
15.1.4 Periodic Steady State Simulation
749(1)
15.1.5 Harmonic-Balance Simulation
750(1)
15.1.6 Periodic Distortion Analysis
751(1)
15.1.7 Envelope Simulation
751(1)
15.1.8 Periodic Small Signal Analysis
751(1)
15.1.9 EM Simulation
751(3)
15.1.10 Statistical and Mismatch Simulation
754(1)
15.2 RFIC Layout
754(4)
15.2.1 General Layout Issues
754(1)
15.2.2 Passive and Active Component Layout
755(3)
15.3 RFIC Measurement
758(30)
15.3.1 On-Wafer Measurement
759(23)
15.3.2 Off-Chip Measurement
782(2)
References
784(1)
Problems
784(4)
16 Systems
788(42)
16.1 Fundamentals of Systems
788(13)
16.1.1 Friis Transmission Equation
788(2)
16.1.2 System Equation
790(1)
16.1.3 Signal-to-Noise Ratio of System
791(2)
16.1.4 Receiver Sensitivity
793(1)
16.1.5 System Performance Factor
794(2)
16.1.6 Power
796(1)
16.1.7 Angle and Range Resolution
797(3)
16.1.8 Range Accuracy
800(1)
16.2 System Type
801(29)
16.2.1 Pulse System
801(2)
16.2.2 FMCW System
803(5)
16.2.3 Receiver Architectures
808(18)
References
826(1)
Problems
826(4)
APPENDIX: RFIC DESIGN EXAMPLE: MIXER
830(11)
A1.1 Circuit Design Specifications and General Design Information
830(1)
A1.2 Mixer Design
830(5)
A1.2.1 Single-Ended to Differential Input Active Balun
832(1)
A1.2.2 Double-Balanced Gilbert Cell
832(2)
A1.2.3 Differential to Single-Ended Output Active Balun
834(1)
A1.2.4 Band-Pass Filter
834(1)
A1.3 Mixer Optimization and Layout
835(1)
A1.4 Simulation Results
836(2)
A1.4.1 Stability
836(1)
A1.4.2 Return Loss
836(1)
A1.4.3 Conversion Gain
836(1)
A1.4.4 Noise Figure
837(1)
A1.4.5 Other Mixer Performance
837(1)
A1.5 Measured Results
838(3)
References
840(1)
Index 841
Cam Nguyen, PhD, IEEE Fellow, is the Texas Instruments Endowed Professor of Electrical and Computer Engineering at Texas A&M University. He was Program Director at the National Science Foundation during 2003-2004, responsible for research programs in RF and wireless technologies. Over the past 35 years, including 12 years at TRW, Martin Marietta, Aeroject ElectroSystems, Hughes Aircraft and ITT Gilfillan, Professor Nguyen has led numerous RF projects for wireless communications, radar and sensing; developed many RF integrated circuits and systems up to 220 GHz; published five books, six book chapters, over 255 papers; and given more than 160 conference presentations.