Muutke küpsiste eelistusi

E-raamat: Re-Use and Recycling of Materials: Solid Waste Management and Water Treatment

Edited by (Point Pleasant, New Jersey, USA), Edited by (Mahatma Gandhi University, India), Edited by , Edited by
Teised raamatud teemal:
  • Formaat - PDF+DRM
  • Hind: 119,60 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Raamatukogudele
Teised raamatud teemal:

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

In recent years, a considerable amount of effort has been devoted, both in industry and academia, towards the recycling and reuse of materials. Most nations are now trying to reduce the amount of waste materials, through the proper recycling of materials.

Re-Use and Recycling of Materials will help readers to understand the current status in the field of waste management, as well as what research is taking place to deal with such issues.

Technical topics discussed in the book include:

  • Municipal solid waste management
  • Recycling of WEEE
  • Waste of industrially important products like lignin and cellulose
  • Recycling of agriculture waste
  • Polymer and plastic recycling
Foreword xxi
Preface xxiii
List of Contributors xxvii
List of Figures xxxiii
List of Tables xliii
List of Abbreviations xlvii
Module 1 Sustainable Developments
1 Reuse and Recycling: An Approach for Sustainable Waste Management
3(12)
Snehalata Ankaram
1.1 Introduction
4(2)
1.1.1 Biomass as Feedstock Source
4(2)
1.2 Applications of Nanotechnology in Waste Management
6(1)
1.3 Waste Recycling in India
6(2)
1.4 Advantages of Recycling
8(3)
1.4.1 Briquetting: A Suitable Option for Waste Management
10(1)
1.5 Conclusion
11(1)
References
11(4)
2 Sustainability of WEEE Recycling in India
15(18)
Biswajit Debnath
2.1 Introduction
16(2)
2.2 Methodology
18(1)
2.3 WEEE Lifecycle and Management in India
19(2)
2.3.1 Lifecycle of WEEE in India
19(1)
2.3.2 WEEE Recycling Practices in India
20(1)
2.4 Security Threats from WEEE in India
21(1)
2.5 WEEE Supply Chain in India
22(1)
2.6 Case Studies
23(1)
2.6.1 Case Study A
23(1)
2.6.2 Case Study B
24(1)
2.7 Sustainability of WEEE Management System in India
24(4)
2.7.1 Generalized Discussion on Environmental Sustainability
25(1)
2.7.2 Generalized Discussion on Economic Sustainability
26(1)
2.7.3 Generalized Discussion on Social Sustainability
27(1)
2.8 Conclusions
28(1)
References
29(4)
3 Autogenous Self-healing in Municipal Waste Incorporated Concretes
33(24)
Deniz Genc Tokgoz
Nesibe Gozde Ozerkan
Simon Joseph Antony
3.1 Introduction
33(3)
3.2 Experimental
36(4)
3.2.1 Materials and Mixture Proportions
36(3)
3.2.2 Specimen Preparation and Initial Pre-loading
39(1)
3.2.3 Methods for Self-healing Evaluation
39(1)
3.3 Results and Discussions
40(9)
3.3.1 Compressive Strength
40(1)
3.3.1.1 At 28 days
40(1)
3.3.1.2 At 28 + 30 days
42(2)
3.3.2 Permeability
44(1)
3.3.3 Characterization of the Concrete Specimens
45(1)
3.3.3.1 TGA analysis
45(1)
3.3.3.2 FTIR analysis
47(2)
3.4 Conclusions
49(1)
References
50(7)
4 Burning the Crop Residues: A Major Environmental Problem in Delhi NCR
57(32)
Pravin Kumar
Rajesh Kumar Singh
4.1 Introduction
57(2)
4.2 Literature Review
59(1)
4.3 Crop Residues Burning in North-Western States of India
59(11)
4.4 The Factors Responsible for Burning of the Crop Residues
70(1)
4.5 Consequences of Crop Residues Burning
71(2)
4.6 Alternative Uses of Crop Residues
73(4)
4.7 Government Initiatives and Legislative Policy to Stop Paddy and Wheat Straw Burning
77(1)
4.8 Conclusions
78(1)
References
79(10)
5 Waste Electrical and Electronic Equipments, Where Do We Stand and Where to Go: An Indian Scenario
89(36)
Sunil S. Suresh
Omdeo K. Gohatre
Kulasekaran Jaidev
Smita Mohanty
Sanjay K. Nayak
5.1 Introduction
90(1)
5.2 Categories of WEEE
91(2)
5.3 Global Trends in Generation of WEEE
93(3)
5.4 The Digital Revolution and Growth of EEE in India
96(17)
5.4.1 WEEE Generation-An Indian Scenario
98(4)
5.4.2 How much of WEEE Importing into India?
102(1)
5.4.3 Producers of WEEE in India
103(1)
5.4.3.1 First level: primary WEEE producers
103(1)
5.4.3.2 Second level: secondary WEEE producers
103(1)
5.4.3.3 Third level: tertiary WEEE producers
105(1)
5.4.4 Disposal and Recycling Practices of WEEE Products Adopted in India
105(1)
5.4.4.1 Informal recycling and formal recycling
106(2)
5.4.5 Environmental Aspects of WEEE Recycling and Disposal
108(1)
5.4.6 Recycling-based Research Initiated in India and its Major Outcomes
109(4)
5.5 Conclusion and Future Perspectives
113(1)
References
114(11)
Module 2 Water-Recycle and Reuse
6 A Critical Review on Wastewater Treatment Techniques for Reuse of Water in Industries
125(16)
Shanmugasundaram O. Lakshmanan
Sujatha Karuppiah
6.1 Introduction
125(2)
6.2 Importance of Wastewater Treatment
127(1)
6.3 Conventional Wastewater Treatment Techniques and its Drawbacks
128(1)
6.4 Advanced Wastewater Treatment Methods for Water Reuse
129(3)
6.5 Causes and Remedies of Advanced Methods
132(1)
6.6 Conclusion
132(1)
References
133(8)
7 Effect of Local Industrial Waste Additives on the Arsenic (V) Removal and Strength of Clay Ceramics for Use in Water Filtration
141(12)
Amrita Kaurwar
Lovelesh Dave
Sandeep Gupta
Anand Plappally
7.1 Introduction
142(1)
7.2 Experimental
143(1)
7.2.1 Apparatus
143(1)
7.2.2 Materials and Fabrication
143(1)
7.2.3 Adsorption Experiment
144(1)
7.3 Result and Discussion
144(5)
7.3.1 Effect of Contact Time
144(1)
7.3.2 Surface Morphology of Ceramics
145(1)
7.3.2.1 Before filtration
145(1)
7.3.2.2 After gravity-based percolation
146(1)
7.3.3 Effect of pH
146(1)
7.3.4 Adsorption Isotherm
147(1)
7.3.5 Strength
147(2)
7.4 Conclusion
149(1)
References
149(4)
8 Treatment of Whey Water from Food Processing Units Using Hybrid Methods
153(20)
Britika Mazumdar
Gargi Biswas
Rajnarayan Saha
Susmita Dutta
8.1 Introduction
154(1)
8.2 Materials and Methods
155(3)
8.2.1 Whey Water Sample Collection and Characterization
155(1)
8.2.2 Treatment of Whey Water using Fenton's Oxidation Method and its Analysis using Ion Chromatography
155(1)
8.2.3 Treatment using Green Algae
156(1)
8.2.3.1 Treatment of whey water using green algae at various nitrate concentrations after Fenton's oxidation
156(1)
8.2.3.2 Estimation of bio-molecules content of spent green algal biomass and its FTIR spectroscopy analysis
157(1)
8.2.4 Treatment of Whey Water using Bacillus Subtilis at Various pH After Fenton's Oxidation
157(1)
8.3 ResultS and Discussion
158(11)
8.3.1 Whey Water Sample Collection and Characterization
158(1)
8.3.2 Treatment of Whey Water using Fenton's Oxidation Method and its Analysis using Ion Chromatography
158(2)
8.3.3 Treatment Using Green Algae
160(1)
8.3.3.1 Treatment of whey water using green algae at various nitrate concentrations after Fenton's oxidation
160(1)
8.3.3.2 Estimation of bio-molecules content of spent green algal biomass and its FTIR spectroscopy analysis
162(5)
8.3.4 Treatment of Whey Water using Bacillus Subtilis After Fenton's Oxidation
167(2)
8.4 Conclusion
169(1)
References
169(4)
9 Bioremediation of High-strength Post-methanated Distillery Wastewater at Lab Scale by Using Constructed Wetland Technology
173(10)
Aparna Bhardwaj
Mona Sharma
Chander Prakash Kaushik
Anubha Kaushik
9.1 Introduction
174(1)
9.2 Materials and Methods
175(1)
9.3 Results and Discussion
176(4)
9.3.1 Changes in Quality of PMDW after Treatment in Different CW Microcosms
176(2)
9.3.2 Changes in Leaf Chlorophyll Content of Plants After Treatment in Different CW Microcosms
178(1)
9.3.3 Changes in Fresh Plant Biomass After Treatment in Different CW Microcosms
179(1)
9.4 Conclusion
180(1)
References
181(2)
10 Reuse of Magnetite (Fe3O4) Nanoparticles in De-Emulsification of Emulsion Effluents of Steel-rolling Mills
183(6)
Parsanta Verma
Ashok N. Bhaskarwar
10.1 Introduction
184(1)
10.2 Experimental
184(2)
10.2.1 Synthesis of Uncoated Fe3O4 Nanoparticles by Co-precipitation Method at Room Temperature
184(1)
10.2.2 Treatment of Emulsion Effluents
185(1)
10.3 Results and Discussion
186(1)
10.3.1 Characterization of Fe3O4 Nanoparticles
186(1)
10.3.2 Total Mass Balance of Oil and Fe3O4 Nanoparticles
186(1)
10.4 Conclusion
187(1)
References
188(1)
11 Application of Agro-Residues-Based Activated Carbon as Adsorbents for Phenol Sequestration from Aqueous Streams: A Review
189(36)
Pushpa Jha
11.1 Introduction
190(2)
11.2 Methods Available for Removal of Phenol
192(1)
11.3 Adsorption as a Cost-Effective Method for Removal of Phenol
192(2)
11.3.1 Quantification of Phenol Adsorbed
194(1)
11.4 Agro-residues as Adsorbents for Phenol
194(5)
11.4.1 Baggasse Fly Ash
194(1)
11.4.2 Rice Husk
195(1)
11.4.3 Coconut Waste
195(1)
11.4.4 Olive Pomace
196(1)
11.4.5 Date Stones and Date Pits
196(1)
11.4.6 Oil Palm Empty Fruit Bunches
196(1)
11.4.7 Corncob
197(1)
11.4.8 Tamarind Nutshell
197(1)
11.4.9 Sawdust
197(1)
11.4.10 Orange Peel Waste
197(1)
11.4.11 Pistacia Mutica Shells
198(1)
11.4.12 Rice-straw
198(1)
11.4.13 Acacia nilotica Branches
198(1)
11.5 Characterization of Agro-residues-based Adsorbents for Phenol
199(1)
11.6 Thermo-chemical Treatment to Agro-residues to Improve Its Adsorption Characteristics
199(6)
11.6.1 Date Stones
201(1)
11.6.2 Corncob
201(1)
11.6.3 Coconut Shell
202(1)
11.6.4 Tobacco Residues
202(1)
11.6.5 Rice Husk
203(1)
11.6.6 Sugarcane Bagasse
203(1)
11.6.7 Plum Kernels
203(1)
11.6.8 Coffee Husk
204(1)
11.6.9 Root Residue of Hemidesmus Indicus
204(1)
11.6.10 Acacia nilotica Branches
204(1)
11.7 Effects of Various Parameters on Adsorption of Phenol
205(2)
11.7.1 Effect of Adsorbent Dosage
205(1)
11.7.2 Effect of pH
205(1)
11.7.3 Effect of Temperature
206(1)
11.7.4 Effect of Initial Phenol Concentration
206(1)
11.7.5 Effect of Contact Time
206(1)
11.8 Mathematical Models for Adsorption Equilibrium Studies
207(3)
11.8.1 Langmuir Isotherm Model
207(1)
11.8.2 Freundlich Isotherm Model
208(1)
11.8.3 Temkin Isotherm Model
209(1)
11.8.4 Dubinin-Radushkevich Isotherm Model
209(1)
11.9 Mathematical Models for the Kinetics of Adsorption
210(1)
11.9.1 Pseudo-first-order Kinetic Model
210(1)
11.9.2 Pseudo-second-order Kinetic Model
210(1)
11.10 Thermodynamics of the Adsorption Process
210(1)
11.11 Regeneration of Adsorbents
211(1)
11.12 Conclusions
212(1)
References
213(12)
Module 3 Solid Waste Management - New Breakthrough
12 Photocatalytic Degradation of Plastic Polymer: A Review
225(26)
Tarun Parangi
Manish Kumar Mishra
12.1 Introduction
225(4)
12.2 Degradation of Plastic Polymers Using Various Photocatalytic Materials
229(2)
12.3 Solid-Phase Photocatalytic Degradation of Plastic Polymers-Photocatalyst Composites
231(8)
12.3.1 Degradation of PE-Photocatalyst Composites
231(2)
12.3.2 Photocatalytic Degradation of PP-photocatalyst Composites
233(1)
12.3.3 Photocatalytic Degradation of PS-photocatalyst Composites
233(2)
12.3.4 Photocatalytic Degradation of PVC-photocatalyst Composites
235(1)
12.3.5 Photocatalytic Degradation of PAM-photocatalysts Composites
236(1)
12.3.6 Photocatalytic Degradation of other Plastic Polymers
237(1)
12.3.7 Photocatalytic Degradation of Plastic Polymers Using Different Photocatalyst Suspension in Water
238(1)
12.4 Mechanism of Photocatalytic Degradation of Polymers
239(2)
12.5 Conclusions
241(1)
References
241(10)
13 Thermo-Mechanical Process Using for Recycling Polystyrene Waste
251(12)
Ahmad K. Jassim
13.1 Introduction
252(1)
13.2 Plastic Waste Management
252(1)
13.3 Sustainable Manufacturing Process
253(1)
13.4 Thermo-Mechanical Process
254(1)
13.5 Case Study
255(1)
13.5.1 Materials
255(1)
13.5.2 Production Procedure
255(1)
13.6 Results
256(4)
13.6.1 Shape of Products
256(1)
13.6.2 IR Inspection
257(1)
13.6.3 Hardness
257(1)
13.6.4 Impact Toughness
258(1)
13.6.5 Workability
259(1)
13.7 Conclusion
260(1)
References
260(3)
14 Hydrogen and Methane Production Under Conditions of Dark Fermentation Process with Low Oxygen Concentration
263(14)
Gawel Solowski
Bartosz Hrycak
Dariusz Czylkowski
Izabela Konkol
Krzysztof Pastuszak
Adam Cenian
14.1 Introduction
263(2)
14.2 Materials and Methods
265(1)
14.3 Results and Discussion
265(6)
14.4 Conclusions
271(1)
References
272(5)
15 Oxidation of Lignin from Wood Dust to Vanillin Using Ionic Liquid Medium and Study of Its Antioxidant Activity
277(20)
Gyanashree Bora
Jyotirekha G. Handique
15.1 Introduction
278(2)
15.2 Experimental
280(6)
15.2.1 Materials
280(1)
15.2.2 Preparation of Ionic Liquid
280(1)
15.2.3 Isolation of Lignin from Wood Dust
281(1)
15.2.4 Oxidation of Isolated Lignin to Vanillin
281(1)
15.2.5 Determination of Antioxidant Activity
282(1)
15.2.5.1 Measurement of DPPH radical scavenging
282(1)
15.2.5.2 Measurement of ABTS radical scavenging
283(1)
15.2.5.3 Measurement of hydroxyl radical scavenging
284(1)
15.2.5.4 Calculation of percentage inhibition
286(1)
15.2.6 Recyclability Test
286(1)
15.3 Results and Discussion
286(6)
15.3.1 Optimum Condition for Isolation of Lignin
286(1)
15.3.2 Optimum Conditions for Oxidation of Lignin to Vanillin
287(1)
15.3.3 Characterization of Vanillin
288(1)
15.3.3.1 Infrared spectrum
288(1)
15.3.3.2 UV-Vis spectrum
289(1)
15.3.3.3 Mass spectrum
290(1)
15.3.4 Determination of Antioxidant Activity
290(2)
15.4 Conclusion
292(1)
References
293(4)
16 Thermochemical Recycling of Carbon-Based Solid Waste
297(16)
Juma Haydary
16.1 Introduction
298(1)
16.2 Raw Materials and Their Characterization
299(4)
16.2.1 Proximate and Elemental Composition
299(1)
16.2.2 Thermogravimetric Analysis and Kinetics of Thermal Decomposition
300(2)
16.2.3 Heating Value
302(1)
16.3 Laboratory Scale Pyrolysis and Gasification Units
303(1)
16.4 Catalysts and Their Characterization
304(1)
16.5 Pyrolysis Yields and Products Composition
305(2)
16.6 Gasification Products and Their Composition
307(1)
16.7 Computer-Aided Modeling of Waste Pyrolysis and Gasification
308(2)
16.8 Conclusion
310(1)
References
310(3)
17 Fabrication and Characterization of Hair Keratin-Chitosan-Based Porous Scaffolds for Biomedical Application
313(14)
Keshaw Ram Aadil
Pratima Gupta
17.1 Introduction
314(1)
17.2 Materials and Methods
315(3)
17.2.1 Materials
315(1)
17.2.2 Extraction of Human Hair Keratin
315(1)
17.2.3 Preparation of Chitosan-Keratin Blend
316(1)
17.2.4 Characterization of Chitosan-Keratin Scaffolds
317(1)
17.2.4.1 SEM analysis
317(1)
17.2.4.2 FTIR analysis
317(1)
17.2.4.3 XRD analysis
317(1)
17.2.4.4 Water solubility test
317(1)
17.2.4.5 Swelling properties test
318(1)
17.2.4.6 Biodegradability assay
318(1)
17.3 Results and Discussion
318(5)
17.3.1 SEM Analysis
318(2)
17.3.2 FTIR Analysis
320(1)
17.3.3 XRD Analysis
321(1)
17.3.4 Physical Characterization of Keratin-Chitosan Scaffolds
322(1)
17.4 Conclusion
323(1)
References
324(3)
18 Waste Paper: A Potential Source for Cellulose Nanofiber and Bio-nanocomposite Applications
327(18)
Le Van Hai
Sunanda Roy
Ruth M. Muthoka
Jung Ho Park
Hyun-Chan Kim
Jaehwan Kim
18.1 Introduction
328(2)
18.2 Methods
330(4)
18.2.1 Conversion of CNF from Waste Paper
330(1)
18.2.2 NCC from Native and Waste Paper
331(1)
18.2.3 TOCNF from Native and Waste Paper
332(1)
18.2.4 NFC from Native and Waste Paper
333(1)
18.3 Results and Discussion
334(5)
18.3.1 Morphology by TEM, SEM, and AFM
334(1)
18.3.2 Thermal Degradation Properties of Cellulose (TGA, TG-DTA)
335(2)
18.3.3 Crystallinity Index (XRD)
337(1)
18.3.4 Potential Applications of CNFs and NCC from Waste Paper
337(2)
18.4 Concluding Remarks
339(1)
References
340(5)
19 Field Evaluation of Plastic Mulch Film for Changes in Its Mechanical Properties and Retrieval Mechanism for Its Reuse Under Onion Crop
345(12)
Mintu Job
Shri Sita Ram Bhakar
19.1 Introduction
346(1)
19.2 Methodology
347(2)
19.2.1 Development of Manual Mulch Laying and Retrieving Machine
347(1)
19.2.2 Constructional Details of the Machine
348(1)
19.2.3 Attachments
349(1)
19.3 Results and Discussion
349(5)
19.3.1 Mechanical Properties of Plastic Mulch with Duration in Field
349(5)
19.4 Conclusion
354(1)
References
355(2)
20 Fluoropolymer-Based Tunable Materials for Emerging Applications
357(42)
Shashikant Shingdilwar
Sk Arif Mohammad
Sanjib Banerjee
20.1 Introduction
358(1)
20.2 Fluoropolymer Based Tunable Materials: Design, Synthesis and Applications
359(26)
20.2.1 Fundamentals and Developments of Controlled Radical (co)Polymerization
359(2)
20.2.2 Controlled Radical Polymerization of Fluoroalkenes
361(1)
20.2.2.1 ITP of fluoroalkenes
361(1)
20.2.2.2 Reversible addition-fragmentation chain transfer/macromolecular design via the interchange of xanthates polymerization of fluoroalkenes
361(1)
20.2.2.3 ATRP of fluoroalkenes
362(1)
20.2.3 Synthesis of 2-(Trifluoromethyl) Acrylic Acid (MAF) and Alkyl 2-(Trifluoromethyl)Acrylates (MAF-Esters)
363(1)
20.2.3.1 Commercial grade MAF and MAF-esters
363(1)
20.2.3.2 Synthesis of non-commercial grade 2-trifluoromethacrylate monomers from MAF and MAF-esters
363(1)
20.2.3.2.1 Mono 2-trifluoromethacrylate monomers
363(2)
20.2.3.3 Synthesis of Bis(2-trifluoromethacrylate) monomers
365(1)
20.2.4 MAF and MAF Derivatives as Precursors of Organic Chemicals
365(1)
20.2.5 Polymerization of MAF and MAF-Esters
365(1)
20.2.5.1 Telomerization
365(1)
20.2.5.2 Copolymerizations of MAF and MAF-esters
367(1)
20.2.5.2.1 Radical copolymerization with hydrogenated monomers
367(1)
20.2.5.2.2 Radical copolymerization of MAF and MAF-esters with a-olefins
368(1)
20.2.5.2.3 Radical copolymerization of MAF and MAF-esters with NB
368(1)
20.2.5.2.4 Radical copolymerization of MAF and MAF-esters with VEs
368(1)
20.2.5.2.5 Radical copolymerization of MAF and MAF-esters with MMA
369(1)
20.2.5.2.6 Radical copolymerization of MAF with MAA
369(1)
20.2.5.2.7 Radical copolymerization of VAc and MAF-TBE
369(1)
20.2.5.2.8 Radical copolymerization of fluorinated monomers with MAF and MAF-esters
s373
20.2.5.2.9 Terpolymerization of MAF and MAF-esters with fluorinated monomers
378(1)
20.2.6 Application of Copolymers Containing MAF and MAF-Esters
379(1)
20.2.6.1 Microlithography
379(1)
20.2.6.2 Molecularity imprinted polymers
380(1)
20.2.6.3 Proton exchange membranes for fuel cells
380(1)
20.2.6.4 Polymeric electrolytes for lithium-ion batteries
381(1)
20.2.6.5 Fluoropolymers/silica nanocomposites
383(1)
20.2.6.6 Multi-compartment micelles
383(1)
20.2.6.7 Self-healing network
384(1)
20.2.6.8 Functional coating
384(1)
20.3 Conclusion
385(1)
References
386(13)
21 Recycling and Reuse of Metal Catalyst: Silica Immobilized Palladium Complex for C-C Coupling Reaction
399(14)
Tahshina Begum
Sanjib Gogoi
Pradip K. Gogoi
21.1 Introduction
399(2)
21.2 General Information
401(1)
21.3 Results and Discussion
402(5)
21.3.1 Pd-NHC Complex Catalyzed Suzuki-Miyaura Reaction
405(1)
21.3.1.1 Catalyst screening and base-solvent optimization
405(2)
21.4 Conclusion
407(1)
References
408(5)
Module 4 RRR Strategy and Atmosphere
22 Investigation on Sound Absorber Performance, Insulation Property, and Dielectric Constant of Sugarcane Bagasse
413(10)
Sakti Prasad Mishra
Punyatoya Mishra
Ganeswar Nath
22.1 Introduction
414(1)
22.2 Materials and Methods
414(2)
22.3 Experimental Arrangements
416(1)
22.3.1 Sound Absorption Measurement
416(1)
22.3.2 Measurement of Insulation Property
416(1)
22.3.3 Dielectric Measurement
416(1)
22.4 Results and Discussion
417(3)
22.5 Conclusion
420(1)
References
421(2)
23 Synthesis and Characterization of Microwave Absorbed Material from Agricultural Wastes
423(6)
Sakti Prasad Mishra
Ganeswar Nath
Punyatoya Mishra
23.1 Introduction
424(1)
23.2 Theory for Computational Parameter
424(1)
23.3 Materials
425(1)
23.3.1 Characterization of the Coconut Fiber and its Composite
425(1)
23.4 Results and Discussion
426(1)
23.5 Conclusion
427(1)
References
428(1)
24 Recycling/Purification of Atmospheric Air-CFD Analysis of Flow Through Filters
429(18)
Sowjanya Makarla
24.1 Introduction
430(2)
24.2 Numerical Model
432(3)
24.3 Results and Discussion
435(8)
24.3.1 Single Filter-Effect of Porosity and Flow Velocity
435(3)
24.3.2 Three-filter Chamber
438(1)
24.3.3 Three-filter Chamber with Divergence
439(1)
24.3.4 Chamber with Fan on Both Sides
440(1)
24.3.5 Three-filter Chamber with Convergence
441(2)
24.4 Conclusion
443
References
441(6)
Index 447(4)
About the Authors 451(18)
About the Editors 469
Ange Nzihou, Sabu Thomas, Nandakumar Kalarikkal, K.P. Jibin