Muutke küpsiste eelistusi

E-raamat: RF and Microwave Engineering: Fundamentals of Wireless Communications

(Dortmund University of Applied Sciences and Arts, Germany)
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Jun-2012
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118349588
  • Formaat - PDF+DRM
  • Hind: 75,27 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.
  • Formaat: PDF+DRM
  • Ilmumisaeg: 21-Jun-2012
  • Kirjastus: John Wiley & Sons Inc
  • Keel: eng
  • ISBN-13: 9781118349588

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book provides a fundamental and practical introduction to radio frequency and microwave engineering and physical aspects of wireless communication

In this book, the author addresses a wide range of radio-frequency and microwave topics with emphasis on physical aspects including EM and voltage waves, transmission lines, passive circuits, antennas, radio wave propagation. Up-to-date RF design tools like RF circuit simulation, EM simulation and computerized smith charts, are used in various examples to demonstrate how these methods can be applied effectively in RF engineering practice.

Design rules and working examples illustrate the theoretical parts. The examples are close to real world problems, so the reader can directly transfer the methods within the context of their own work. At the end of each chapter a list of problems is given in order to deepen the reader’s understanding of the chapter material and practice the new competences. Solutions are available on the author’s website.

Key Features:

  • Presents a wide range of RF topics with emphasis on physical aspects e.g. EM and voltage waves, transmission lines, passive circuits, antennas
  • Uses various examples of modern RF tools that show how the methods can be applied productively in RF engineering practice
  • Incorporates various design examples using circuit and electromagnetic (EM) simulation software
  • Discusses the propagation of waves: their representation, their effects, and their utilization in passive circuits and antenna structures
  • Provides a list of problems at the end of each chapter
  • Includes an accompanying website containing solutions to the problems (http:\\www.fh-dortmund.de\gustrau_rf_textbook)
This will be an invaluable textbook for bachelor and masters students on electrical engineering courses (microwave engineering, basic circuit theory and electromagnetic fields, wireless communications). Early-stage RF practitioners, engineers (e.g. application engineer) working in this area will also find this book of interest.

Arvustused

Summing Up: Recommended.  Upper-division undergraduates, graduate students, two-year technical program students, researchers/faculty, and professionals/practitioners.  (Choice, 1 March 2013)

Preface xiii
List of Abbreviations
xv
List of Symbols
xvii
1 Introduction
1(10)
1.1 Radiofrequency and Microwave Applications
1(1)
1.2 Frequency Bands
2(2)
1.3 Physical Phenomena in the High Frequency Domain
4(4)
1.3.1 Electrically Short Transmission Line
4(2)
1.3.2 Transmission Line with Length Greater than One-Tenth of Wavelength
6(1)
1.3.3 Radiation and Antennas
7(1)
1.4 Outline of the Following
Chapters
8(3)
References
9(2)
2 Electromagnetic Fields and Waves
11(48)
2.1 Electric and Magnetic Fields
11(13)
2.1.1 Electrostatic Fields
11(7)
2.1.2 Steady Electric Current and Magnetic Fields
18(5)
2.1.3 Differential Vector Operations
23(1)
2.2 Maxwell's Equations
24(10)
2.2.1 Differential Form in the Time Domain
25(1)
2.2.2 Differential Form for Harmonic Time Dependence
26(1)
2.2.3 Integral Form
27(2)
2.2.4 Constitutive Relations and Material Properties
29(3)
2.2.5 Interface Conditions
32(2)
2.3 Classification of Electromagnetic Problems
34(2)
2.3.1 Static Fields
34(1)
2.3.2 Quasi-Static Fields
34(1)
2.3.3 Coupled Electromagnetic Fields
35(1)
2.4 Skin Effect
36(3)
2.5 Electromagnetic Waves
39(16)
2.5.1 Wave Equation and Plane Waves
39(4)
2.5.2 Polarization of Waves
43(3)
2.5.3 Reflection and Refraction
46(7)
2.5.4 Spherical Waves
53(2)
2.6 Summary
55(1)
2.7 Problems
55(4)
References
57(1)
Further Reading
57(2)
3 Transmission Line Theory and Transient Signals on Lines
59(50)
3.1 Transmission Line Theory
59(32)
3.1.1 Equivalent Circuit of a Line Segment
59(2)
3.1.2 Telegrapher's Equation
61(2)
3.1.3 Voltage and Current Waves on Transmission Lines
63(4)
3.1.4 Load-Terminated Transmission Line
67(2)
3.1.5 Input Impedance
69(2)
3.1.6 Loss-less Transmission Lines
71(3)
3.1.7 Low-loss Transmission Lines
74(1)
3.1.8 Transmission Line with Different Terminations
75(8)
3.1.9 Impedance Transformation with Loss-less Lines
83(1)
3.1.10 Reflection Coefficient
84(3)
3.1.11 Smith Chart
87(4)
3.2 Transient Signals on Transmission Lines
91(11)
3.2.1 Step Function
91(10)
3.2.2 Rectangular Function
101(1)
3.3 Eye Diagram
102(2)
3.4 Summary
104(2)
3.5 Problems
106(3)
References
107(1)
Further Reading
107(2)
4 Transmission Lines and Waveguides
109(48)
4.1 Overview
109(3)
4.2 Coaxial Line
112(7)
4.2.1 Specific Inductance and Characteristic Impedance
112(3)
4.2.2 Attenuation of Low-loss Transmission Lines
115(2)
4.2.3 Technical Frequency Range
117(2)
4.2.4 Areas of Application
119(1)
4.3 Microstrip Line
119(5)
4.3.1 Characteristic Impedance and Effective Permittivity
119(4)
4.3.2 Dispersion and Technical Frequency Range
123(1)
4.3.3 Areas of Application
124(1)
4.4 Stripline
124(2)
4.4.1 Characteristic Impedance
124(1)
4.4.2 Technical Frequency Range
125(1)
4.5 Coplanar Line
126(4)
4.5.1 Characteristic Impedance and Effective Permittivity
127(1)
4.5.2 Coplanar Waveguide over Ground
128(1)
4.5.3 Coplanar Waveguides and Air Bridges
129(1)
4.5.4 Technical Frequency Range
130(1)
4.5.5 Areas of Application
130(1)
4.6 Rectangular Waveguide
130(13)
4.6.1 Electromagnetic Waves between Electric Side Walls
131(4)
4.6.2 Dominant Mode (TE10)
135(3)
4.6.3 Higher Order Modes
138(1)
4.6.4 Areas of Application
139(1)
4.6.5 Excitation of Waveguide Modes
140(1)
4.6.6 Cavity Resonators
141(2)
4.7 Circular Waveguide
143(4)
4.8 Two-Wire Line
147(2)
4.8.1 Characteristic Impedance
148(1)
4.8.2 Areas of Application
148(1)
4.9 Three-Conductor Transmission Line
149(5)
4.9.1 Even and Odd Modes
149(3)
4.9.2 Characteristic Impedances and Propagation Constants
152(2)
4.9.3 Line Termination for Even and Odd Modes
154(1)
4.10 Problems
154(3)
References
155(2)
5 Scattering Parameters
157(30)
5.1 Multi-Port Network Representations
157(2)
5.2 Normalized Power Waves
159(2)
5.3 Scattering Parameters and Power
161(3)
5.4 S-Parameter Representation of Network Properties
164(6)
5.4.1 Matching
164(1)
5.4.2 Complex Conjugate Matching
165(2)
5.4.3 Reciprocity
167(1)
5.4.4 Symmetry
168(1)
5.4.5 Passive and Loss-less Circuits
168(1)
5.4.6 Unilateral Circuits
169(1)
5.4.7 Specific Characteristics of Three-Port Networks
169(1)
5.5 Calculation of S-Parameters
170(5)
5.5.1 Reflection Coefficients
170(1)
5.5.2 Transmission Coefficients
170(3)
5.5.3 Renormalization
173(2)
5.6 Signal Flow Method
175(6)
5.6.1 One-Port Network/Load Termination
176(1)
5.6.2 Source
176(1)
5.6.3 Two-Port Network
176(1)
5.6.4 Three-Port Network
177(1)
5.6.5 Four-Port Network
178(3)
5.7 S-Parameter Measurement
181(3)
5.8 Problems
184(3)
References
186(1)
Further Reading
186(1)
6 RF Components and Circuits
187(62)
6.1 Equivalent Circuits of Concentrated Passive Components
187(5)
6.1.1 Resistor
187(2)
6.1.2 Capacitor
189(2)
6.1.3 Inductor
191(1)
6.2 Transmission Line Resonator
192(4)
6.2.1 Half-Wave Resonator
193(1)
6.2.2 Quarter-Wave Resonator
194(2)
6.3 Impedance Matching
196(7)
6.3.1 LC-Networks
196(3)
6.3.2 Matching Using Distributed Elements
199(4)
6.4 Filter
203(8)
6.4.1 Classical LC-Filter Design
203(2)
6.4.2 Butterworth Filter
205(6)
6.5 Transmission Line Filter
211(11)
6.5.1 Edge-Coupled Line Filter
212(6)
6.5.2 Hairpin Filter
218(1)
6.5.3 Stepped Impedance Filter
218(1)
6.5.4 Parasitic Box Resonance
219(1)
6.5.5 Waveguide Filter
220(2)
6.6 Circulator
222(1)
6.7 Power Divider
223(4)
6.7.1 Wilkinson Power Divider
223(1)
6.7.2 Unequal Split Power Divider
224(3)
6.8 Branchline Coupler
227(4)
6.8.1 Conventional 3 dB Coupler
227(2)
6.8.2 Unequal Split Branchline Coupler
229(2)
6.9 Rat Race Coupler
231(1)
6.10 Directional Coupler
231(3)
6.11 Balanced-to-Unbalanced Circuits
234(2)
6.12 Electronic Circuits
236(6)
6.12.1 Mixers
238(2)
6.12.2 Amplifiers and Oscillators
240(2)
6.13 RF Design Software
242(4)
6.13.1 RF Circuit Simulators
242(1)
6.13.2 Three-Dimensional Electromagnetic Simulators
242(4)
6.14 Problems
246(3)
References
247(1)
Further Reading
248(1)
7 Antennas
249(46)
7.1 Fundamental Parameters
249(10)
7.1.1 Nearfield and Farfield
249(3)
7.1.2 Isotropic Radiator
252(1)
7.1.3 Radiation Pattern and Related Parameters
252(5)
7.1.4 Impedance Matching and Bandwidth
257(2)
7.2 Standard Types of Antennas
259(3)
7.3 Mathematical Treatment of the Hertzian Dipole
262(4)
7.4 Wire Antennas
266(5)
7.4.1 Half-Wave Dipole
266(2)
7.4.2 Monopole
268(2)
7.4.3 Concepts for Reducing Antenna Height
270(1)
7.5 Planar Antennas
271(9)
7.5.1 Rectangular Patch Antenna
272(6)
7.5.2 Circularly Polarizing Patch Antennas
278(2)
7.5.3 Planar Dipole and Inverted-F Antenna
280(1)
7.6 Antenna Arrays
280(13)
7.6.1 Single Element Radiation Pattern and Array Factor
280(5)
7.6.2 Phased Array Antennas
285(5)
7.6.3 Beam Forming
290(3)
7.7 Modern Antenna Concepts
293(1)
7.8 Problems
293(2)
References
294(1)
Further Reading
294(1)
8 Radio Wave Propagation
295(28)
8.1 Propagation Mechanisms
295(7)
8.1.1 Reflection and Refraction
295(1)
8.1.2 Absorption
296(1)
8.1.3 Diffraction
296(2)
8.1.4 Scattering
298(2)
8.1.5 Doppler Effect
300(2)
8.2 Basic Propagation Models
302(12)
8.2.1 Free Space Loss
302(3)
8.2.2 Attenuation of Air
305(1)
8.2.3 Plane Earth Loss
305(5)
8.2.4 Point-to-Point Radio Links
310(2)
8.2.5 Layered Media
312(2)
8.3 Path Loss Models
314(7)
8.3.1 Multipath Environment
314(3)
8.3.2 Clutter Factor Model
317(1)
8.3.3 Okumura-Hata Model
317(2)
8.3.4 Physical Models and Numerical Methods
319(2)
8.4 Problems
321(2)
References
321(1)
Further Reading
322(1)
Appendix A
323(8)
A.1 Coordinate Systems
323(3)
A.1.1 Cartesian Coordinate System
323(1)
A.1.2 Cylindrical Coordinate System
324(1)
A.1.3 Spherical Coordinate System
325(1)
A.2 Logarithmic Representation
326(5)
A.2.1 Dimensionless Quantities
326(1)
A.2.2 Relative and Absolute Ratios
327(1)
A.2.3 Link Budget
328(3)
Index 331
Prof. Frank Gustrau, University of Applied Sciences and Arts, Germany Frank Gustrau has worked as an RF engineer in academia and industry. In 2003 he became professor at the University of Applied Sciences and Art in Dortmund, Germany. Throughout his career Frank has supervised students in their project work, given lectures on different RF related topics and worked extensively with EM and RF circuit simulation tools.