Muutke küpsiste eelistusi

E-raamat: Scale Space and Variational Methods in Computer Vision: Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings

Edited by , Edited by , Edited by , Edited by
  • Formaat - PDF+DRM
  • Hind: 110,53 €*
  • * hind on lõplik, st. muud allahindlused enam ei rakendu
  • Lisa ostukorvi
  • Lisa soovinimekirja
  • See e-raamat on mõeldud ainult isiklikuks kasutamiseks. E-raamatuid ei saa tagastada.

DRM piirangud

  • Kopeerimine (copy/paste):

    ei ole lubatud

  • Printimine:

    ei ole lubatud

  • Kasutamine:

    Digitaalõiguste kaitse (DRM)
    Kirjastus on väljastanud selle e-raamatu krüpteeritud kujul, mis tähendab, et selle lugemiseks peate installeerima spetsiaalse tarkvara. Samuti peate looma endale  Adobe ID Rohkem infot siin. E-raamatut saab lugeda 1 kasutaja ning alla laadida kuni 6'de seadmesse (kõik autoriseeritud sama Adobe ID-ga).

    Vajalik tarkvara
    Mobiilsetes seadmetes (telefon või tahvelarvuti) lugemiseks peate installeerima selle tasuta rakenduse: PocketBook Reader (iOS / Android)

    PC või Mac seadmes lugemiseks peate installima Adobe Digital Editionsi (Seeon tasuta rakendus spetsiaalselt e-raamatute lugemiseks. Seda ei tohi segamini ajada Adober Reader'iga, mis tõenäoliselt on juba teie arvutisse installeeritud )

    Seda e-raamatut ei saa lugeda Amazon Kindle's. 

This book contains 71 original, scienti c articles that address state-of-the-art researchrelatedto scale space and variationalmethods for image processing and computer vision. Topics covered in the book range from mathematical analysis of both established and new models, fast numerical methods, image analysis, segmentation, registration, surface and shape construction and processing, to real applications in medical imaging and computer vision. The ideas of scale spaceandvariationalmethodsrelatedtopartialdi erentialequationsarecentral concepts. The papers re ect the newest developments in these ?elds and also point to the latest literature. All the papers were submitted to the Second International Conference on Scale Space and Variational Methods in Computer Vision, which took place in Voss, Norway, during June 15, 2009. The papers underwent a peer review process similar to that of high-level journals in the ?eld. We thank the authors, the Scienti c Committee, the Program Committee and the reviewers for their hard work and helpful collaboration. Their contribution has been crucial for the e cient processing of this book, and for the success of the conference.
Segmentation and Detection.- Graph Cut Optimization for the Piecewise
Constant Level Set Method Applied to Multiphase Image Segmentation.- Tubular
Anisotropy Segmentation.- An Unconstrained Multiphase Thresholding Approach
for Image Segmentation.- Extraction of the Intercellular Skeleton from 2D
Images of Embryogenesis Using Eikonal Equation and Advective Subjective
Surface Method.- On Level-Set Type Methods for Recovering Piecewise Constant
Solutions of Ill-Posed Problems.- The Nonlinear Tensor Diffusion in
Segmentation of Meaningful Biological Structures from Image Sequences of
Zebrafish Embryogenesis.- Composed Segmentation of Tubular Structures by an
Anisotropic PDE Model.- Extrapolation of Vector Fields Using the Infinity
Laplacian and with Applications to Image Segmentation.- A Schrödinger
Equation for the Fast Computation of Approximate Euclidean Distance
Functions.- Semi-supervised Segmentation Based on Non-local Continuous
Min-Cut.- Momentum Based Optimization Methods for Level Set Segmentation.-
Optimization of Divergences within the Exponential Family for Image
Segmentation.- Convex Multi-class Image Labeling by Simplex-Constrained Total
Variation.- Geodesically Linked Active Contours: Evolution Strategy Based on
Minimal Paths.- Validation of Watershed Regions by Scale-Space Statistics.-
Adaptation of Eikonal Equation over Weighted Graph.- A Variational Model for
Interactive Shape Prior Segmentation and Real-Time Tracking.- Image
Enhancement and Reconstruction.- A Nonlinear Probabilistic Curvature Motion
Filter for Positron Emission Tomography Images.- Finsler Geometry on Higher
Order Tensor Fields and Applications to High Angular Resolution Diffusion
Imaging.- Bregman-EM-TV Methods with Application to Optical Nanoscopy.-
PDE-Driven Adaptive Morphology forMatrix Fields.- On Semi-implicit Splitting
Schemes for the Beltrami Color Flow.- Multi-scale Total Variation with
Automated Regularization Parameter Selection for Color Image Restoration.-
Multiplicative Noise Cleaning via a Variational Method Involving Curvelet
Coefficients.- Projected Gradient Based Color Image Decomposition.- A Dual
Formulation of the TV-Stokes Algorithm for Image Denoising.- Anisotropic
Regularization for Inverse Problems with Application to the Wiener Filter
with Gaussian and Impulse Noise.- Locally Adaptive Total Variation
Regularization.- Basic Image Features (BIFs) Arising from Approximate
Symmetry Type.- An Anisotropic Fourth-Order Partial Differential Equation for
Noise Removal.- Enhancement of Blurred and Noisy Images Based on an Original
Variant of the Total Variation.- Coarse-to-Fine Image Reconstruction Based on
Weighted Differential Features and Background Gauge Fields.- Edge-Enhanced
Image Reconstruction Using (TV) Total Variation and Bregman Refinement.-
Nonlocal Variational Image Deblurring Models in the Presence of Gaussian or
Impulse Noise.- A Geometric PDE for Interpolation of M-Channel Data.- An
Edge-Preserving Multilevel Method for Deblurring, Denoising, and
Segmentation.- Fast Dejittering for Digital Video Frames.- Sparsity
Regularization for Radon Measures.- Split Bregman Algorithm, Douglas-Rachford
Splitting and Frame Shrinkage.- Anisotropic Smoothing Using Double
Orientations.- Image Denoising Using TV-Stokes Equation with an
Orientation-Matching Minimization.- Augmented Lagrangian Method, Dual Methods
and Split Bregman Iteration for ROF Model.- The Convergence of a
Central-Difference Discretization of Rudin-Osher-Fatemi Model for Image
Denoising.- Theoretical Foundations for Discrete Forward-and-Backward
Diffusion Filtering.- L 0-Norm and Total Variation for Wavelet Inpainting.-
Total-Variation Based Piecewise Affine Regularization.- Image Denoising by
Harmonic Mean Curvature Flow.- Motion Analysis, Optical Flow, Registration
and Tracking.- Tracking Closed Curves with Non-linear Stochastic Filters.- A
Multi-scale Feature Based Optic Flow Method for 3D Cardiac Motion
Estimation.- A Combined Segmentation and Registration Framework with a
Nonlinear Elasticity Smoother.- A Scale-Space Approach to Landmark
Constrained Image Registration.- A Variational Approach for Volume-to-Slice
Registration.- Hyperbolic Numerics for Variational Approaches to
Correspondence Problems.- Surfaces and Shapes.- From a Single Point to a
Surface Patch by Growing Minimal Paths.- Optimization of Convex Shapes: An
Approach to Crystal Shape Identification.- An Implicit Method for
Interpolating Two Digital Closed Curves on Parallel Planes.- Pose Invariant
Shape Prior Segmentation Using Continuous Cuts and Gradient Descent on Lie
Groups.- A Non-local Approach to Shape from Ambient Shading.- An Elasticity
Approach to Principal Modes of Shape Variation.- Pre-image as Karcher Mean
Using Diffusion Maps: Application to Shape and Image Denoising.- Fast Shape
from Shading for Phong-Type Surfaces.- Generic Scene Recovery Using Multiple
Images.- Scale Space and Feature Extraction.- Highly Accurate PDE-Based
Morphology for General Structuring Elements.- Computational Geometry-Based
Scale-Space and Modal Image Decomposition.- Highlight on a Feature Extracted
at Fine Scales: The Pointwise Lipschitz Regularity.- Line Enhancement and
Completion via Linear Left Invariant Scale Spaces on SE(2).- Spatio-Featural
Scale-Space.- Scale Spaces on the 3D Euclidean Motion Group for Enhancement
of HARDI Data.- On the Rate of Structural Change inScale Spaces.- Transitions
of a Multi-scale Image Hierarchy Tree.- Local Scale Measure for Remote
Sensing Images.